Citation: | HU Shun, XIA Dingfeng, ZOU Jin, ZHONG Shengwen. Research on the synthesis process of cathode material LiNi0.8Mn0.2O2 precursor[J]. Nonferrous Metals Science and Engineering, 2022, 13(4): 70-79. DOI: 10.13264/j.cnki.ysjskx.2022.04.009 |
[1] |
LIU H D, WANG J, ZHANG X F, et al. Morphological evolution of high-Voltage Spinel LiNi0.5Mn1.5O4 cathode materials for lithium-ion batteries: the critical effects of surface orientations and particle size[J]. ACS Applied Materials & Interfaces, 2016, 8(7): 4661-4675.
|
[2] |
HWANG T, LEE J K, MUN J, et al. Surface-modified carbon nanotube coating on high-voltage LiNi0.5Mn1.5O4 cathodes for lithium ion batteries[J]. Journal of Power Sources, 2016, 322: 40-48. doi: 10.1016/j.jpowsour.2016.04.118
|
[3] |
WANG F, SUO L M, LIANG Y J, et al. Spinel LiNi0.5Mn1.5O4 cathode for high-energy aqueous lithium-ion batteries[J]. Advanced Energy Materials, 2017, 7(8): 1600922. doi: 10.1002/aenm.201600922
|
[4] |
SUN W W, LI Y, XIE K, et al. Constructing hierarchical urchin-like LiNi0.5Mn1.5O4 hollow spheres with exposed {111} facets as advanced cathode material for lithium-ion batteries[J]. Nano Energy, 2018, 54: 175-183. doi: 10.1016/j.nanoen.2018.10.006
|
[5] |
BHUVANESWARI S, VARADARAJU U V, GOPALAN R, et al. Sc-doping induced cation-disorder in LiNi0.5Mn1.5O4 spinel leading to improved electrochemical performance as cathode in lithium ion batteries[J]. Electrochimica Acta, 2019, 327: 135008. doi: 10.1016/j.electacta.2019.135008
|
[6] |
KUENZEL M, KIM G T, ZARRABEITIA M, et al. Crystal engineering of TMPOx-coated LiNi0.5Mn1.5O4 cathodes for high-performance lithium-ion batteries[J]. Materials Today, 2020, 39: 127-136. doi: 10.1016/j.mattod.2020.04.003
|
[7] |
ZHANG C C, LIU M M, PAN G J, et al. Enhanced electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode for lithium-ion batteries by precursor preoxidation[J]. ACS Applied Energy Materials, 2018, 1(8): 4374-4384. doi: 10.1021/acsaem.8b00994
|
[8] |
YUAN A, TANG H, LIU L, et al. High performance of phosphorus and fluorine co-doped LiNi0.8Co0.1Mn0.1O2 as a cathode material for lithium ion batteries[J]. Journal of Alloys and Compounds, 2020, 844: 156210. doi: 10.1016/j.jallcom.2020.156210
|
[9] |
PARK S M, CHO T H, YOSHIO M. Novel synthesis method for preparing layered Li[Mn1/2Ni1/2]O2 as a cathode material for lithium ion secondary battery[J]. Chemistry Letters, 2004, 33(6): 748-749. doi: 10.1246/cl.2004.748
|
[10] |
MA Z, YE N Q, WU B M, et al. Influence of Cr-substitution on the electrochemical performance of LiNi0.5Mn0.5O2 cathode material for lithium ion batteries[J]. Rare Metal Materials and Engineering, 2014, 43(8): 1826-1829. doi: 10.1016/S1875-5372(14)60139-9
|
[11] |
MENG X L, DOU S M, WANG W L. High power and high capacity cathode material LiNi0.5Mn0.5O2 for advanced lithium-ion batteries[J]. Journal of Power Sources, 2008, 184(2): 489-493. doi: 10.1016/j.jpowsour.2008.04.015
|
[12] |
HU G R, SHI Y, FAN J, et al. Sb doping and Sb2O3 coating collaboration to improve the electrochemical performance of LiNi0.5Mn0.5O2 cathode material for lithium ion batteries[J]. Electrochimica Acta, 2020, 364: 137127. doi: 10.1016/j.electacta.2020.137127
|
[13] |
钟盛文. LiNi1/3Co1/3Mn1/3O2及三元镍基梯度正极材料LiNi1-x-yCoxMnyO2的制备与性能[D]. 北京: 北京科技大学, 2007.
|
[14] |
钟盛文, 赖美珍, 张华军, 等. 无钴镍基正极材料LiNi0.8Mn0.2O2的制备及电化学性能研究[J]. 电源技术, 2016, 40(5): 947-949, 976. doi: 10.3969/j.issn.1002-087X.2016.05.001
|
[15] |
姚寿广, 窦飞, 刘顿, 等. Mn、Mg共掺杂Ni(OH)2的电化学性能[J]. 无机化学学报, 2021, 37(1): 95-102. https://www.cnki.com.cn/Article/CJFDTOTAL-WJHX202101011.htm
|
[16] |
MA L, KANG C X, FU L K, et al. Core-shell Ni1.5Sn@Ni(OH)2 nanoflowers as battery-type supercapacitor electrodes with high rate and capacitance[J]. Journal of Colloid and Interface Science, 2022, 613: 244-255. doi: 10.1016/j.jcis.2022.01.054
|
[17] |
CHEN Y H, LI Y Z, WANG G Z, et al. Synthesis and characterization of Li1.05Co0.3Ni0.35Mn0.3M0.05O2 (M=Ge, Sn) cathode materials for lithium ion battery[J]. Journal of Wuhan University of Technology-Master Sci Ed, 2012, 27(2): 212-216. doi: 10.1007/s11595-012-0439-x
|
[18] |
GUO J, HU C Y. Synthesis of nanosized LiNi0.7Mn0.2Co0.1O2 cathode material for lithium ion batteries by combination method of forced hydrolytic and hydroxide coprecipitation[J]. Materials Research Innovations, 2015, 19(4): 238-243. doi: 10.1179/1433075X14Y.0000000247
|
[19] |
YANG Y, LI S, ZHANG Q, et al. Spherical agglomeration of octahedral LiNi0.5Co4xMn1.5-3xO4 cathode material prepared by a continuous coprecipitation method for 5 V lithium-ion batteries[J]. Industrial & Engineering Chemistry Researc, 2017, 56(1): 175-182.
|
[20] |
董鹏, 张英杰, 刘嘉铭, 等. 纳米磷酸铁包覆锂离子电池正极材料LiNi0.5Co0.2Mn0.3O2的制备及其电化学性能[J]. 材料工程, 2017, 45(11): 49-57. doi: 10.11868/j.issn.1001-4381.2015.001257
|
[21] |
HE W X, LIU J G, SUN W, et al. Coprecipitation-gel synthesis and degradation mechanism of octahedral Li1.2Mn0.54Ni0.13Co0.13O2 as high-performance cathode materials for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(27): 23018-23028.
|
[22] |
LI L N, HAN E S, ZHU L Z, et al. Effect of Zr doping and Al-Zr co-doping on LiNi0.5Co0.25Mn0.25O2 for lithium-ion batteries[J]. Solid State Ionics, 2020, 346.
|
[23] |
DONG H X, KOENIG G M. A review on synthesis and engineering of crystal precursors produced via coprecipitation for multicomponent lithium-ion battery cathode materials[J]. Cryst Eng Comm, 2020, 22(9): 1514-1530. doi: 10.1039/C9CE00679F
|
[24] |
LIU H S, YANG Y, ZHANG J. Investigation and improvement on the storage property of LiNi0.8Co0.2O2 as a cathode material for lithium-ion batteries[J]. Journal of Power Sources, 2006, 162(1): 644-650. doi: 10.1016/j.jpowsour.2006.07.028
|
[25] |
TANG H W, ZHU Z H, CHANG Z R, et al. Synthesis and electrochemical properties of high-density LiNi0.8Co0.2O2 for the lithium-ion-battery cathode[J]. Electrochemical and Solid State Letters, 2008, 11(3): 34-37.
|
[26] |
WANG Y, ROLLER J, MARIC R. Direct dry synthesis of thin nanostructured LiNi0.8Co0.2O2 film for lithium ion micro-battery cathodes[J]. Electrochimica Acta, 2017, 241: 510-516. doi: 10.1016/j.electacta.2017.04.136
|
[27] |
JIA H L, ZHU W C, XU Z H, et al. Precursor effects on structural ordering and electrochemical performances of Ni-rich layered LiNi0.8Co0.2O2 cathode materials for high-rate lithium ion batteries[J]. Electrochimica Acta, 2018, 266: 7-16. doi: 10.1016/j.electacta.2018.02.027
|
[1] | XIA Dingfeng, ZHOU Miaomiao, GUO Qiankun, HU Shun, ZOU Jin, ZHONG Shengwen. Effect of graphene composite conductor on kinetic and electrochemical properties of LiNi0.5Co0.2Mn0.3O2[J]. Nonferrous Metals Science and Engineering, 2022, 13(3): 35-42. DOI: 10.13264/j.cnki.ysjskx.2022.03.005 |
[2] | RAO Xianfa, LI Baobao, LOU Yitao, HUANG Jinchao, WU Tingting, QIU Yuping, WANG Jiang, SHI Xuanbo, ZHONG Shengwen. Preparation and performance comparison of single crystal LiNi0.8Co0.1Mn0.1O2 cathode materials[J]. Nonferrous Metals Science and Engineering, 2021, 12(4): 42-50. DOI: 10.13264/j.cnki.ysjskx.2021.04.006 |
[3] | HUANG Qingyan, LIANG Yali, WANG Junrong, XIE Guangming, WANG Chunxiang, LI Zhifeng. Effect of sintering temperature on properties of LiNi0.8Co0.1Mn0.1O2 material synthesized by sol-gel method[J]. Nonferrous Metals Science and Engineering, 2020, 11(6): 64-70. DOI: 10.13264/j.cnki.ysjskx.2020.06.009 |
[4] | LIU Zhijun, PENG Wanwan, LI Zhifeng, WANG Chunxiang, ZHANG Qian, ZHONG Shengwen. Effect of niobium doping on the electrochemical performance of nickel-based cathode materials[J]. Nonferrous Metals Science and Engineering, 2020, 11(2): 89-96. DOI: 10.13264/j.cnki.ysjskx.2020.02.013 |
[5] | LAN Chaobo, ZHANG Qian, QIU Shitao, MENG Fuhai, WU Lijue, ZHONG Shengwen. Study on high-voltage cathode material LiNi0.5Co0.2Mn0.3O2[J]. Nonferrous Metals Science and Engineering, 2019, 10(4): 72-77. DOI: 10.13264/j.cnki.ysjskx.2019.04.012 |
[6] | TIAN Feng, NIE Wei, GUO Qiankun, WU Lijue, LIANG Weichun, FU Haikuo, ZHONG Shengwen. Preparation of carbon nanotube conductive paste and its effect on electrochemical performance of LiNi0.8Co0.1Mn0.1O2[J]. Nonferrous Metals Science and Engineering, 2019, 10(2): 62-67. DOI: 10.13264/j.cnki.ysjskx.2019.02.009 |
[7] | QIU Shitao, ZHONG Shengwen, LI Tingting, YANG Jinmeng, TIAN Feng. Study on the electrochemical performance of Cu-added LiNi0.6Co0.2Mn0.2O2[J]. Nonferrous Metals Science and Engineering, 2018, 9(5): 21-25. DOI: 10.13264/j.cnki.ysjskx.2018.05.004 |
[8] | LAI Jianghong, ZHONG Shengwen, GUO Jinkang, LYU Qingwen, LUO Chuiyi, LI Dong. Synthesis and characterization of LiNi1/3Co1/3Mn1/3O2 cathode materials[J]. Nonferrous Metals Science and Engineering, 2017, 8(4): 68-72. DOI: 10.13264/j.cnki.ysjskx.2017.04.012 |
[9] | LV Qingwen, YIN Congling, ZHONG Shengwen, DING Nengwen, LAI Jianghong, LUO Chuiyi, FAN Fengsong. Synthesis and characterization of LiNi0.6Co0.1Mn0.3O2 cathode materials[J]. Nonferrous Metals Science and Engineering, 2016, 7(4): 50-54. DOI: 10.13264/j.cnki.ysjskx.2016.04.009 |
[10] | ZHONG Sheng-wen, ZHONG Feng-di, ZHANG Qian. Synthesis and Al-doping properties of lithium-ion cathode materials LiNi0.5Mn0.3Co0.2O2[J]. Nonferrous Metals Science and Engineering, 2013, 4(4): 11-16. DOI: 10.13264/j.cnki.ysjskx.2013.04.002 |
1. |
倪武帆,邓思雨,甘宋国. 贸易政策不确定性对制造业出口绩效的影响. 北方经贸. 2023(09): 26-29 .
![]() | |
2. |
王国钰,曹希绅,周进生. 基于DEA-Tobit模型的中国有色金属矿采选业上市公司经营效率和影响因素研究. 中国矿业. 2022(01): 41-50 .
![]() | |
3. |
许译心,王小茜,路增祥. 基于CAPM模型改进的采矿权评估方法. 有色金属科学与工程. 2022(05): 108-113 .
![]() | |
4. |
邬建辉,陈小松,谌思磊,王翊民,严润. 铜锰渣酸浸及选择性硫化沉淀法回收铜工艺. 有色金属科学与工程. 2021(03): 70-76 .
![]() |