Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
HU Shun, XIA Dingfeng, ZOU Jin, ZHONG Shengwen. Research on the synthesis process of cathode material LiNi0.8Mn0.2O2 precursor[J]. Nonferrous Metals Science and Engineering, 2022, 13(4): 70-79. DOI: 10.13264/j.cnki.ysjskx.2022.04.009
Citation: HU Shun, XIA Dingfeng, ZOU Jin, ZHONG Shengwen. Research on the synthesis process of cathode material LiNi0.8Mn0.2O2 precursor[J]. Nonferrous Metals Science and Engineering, 2022, 13(4): 70-79. DOI: 10.13264/j.cnki.ysjskx.2022.04.009

Research on the synthesis process of cathode material LiNi0.8Mn0.2O2 precursor

More Information
  • Received Date: February 21, 2022
  • Revised Date: April 06, 2022
  • Available Online: September 02, 2022
  • Currently, the low cost and stable performance of cobalt-free nickel manganese cathode materials is a research hotspot. This study prepared a Ni0.8Mn0.2(OH)2 precursor through a coprecipitation method, used ammonia as a complexing agent and explored the effect of NH3 concentration on the grain growth and morphology of the coprecipitated Ni0.8Mn0.2(OH)2 precursor, as well as its effect on the crystal structure and electrochemical properties of LiNi0.8Mn0.2O2 of the cathode material for lithium ion batteries. The structure, morphology and electrochemical properties of the materials were characterized by X-ray diffraction, scanning electron microscopy, cyclic voltammetry, AC impedance and battery charge discharge tests. The characterization results showed that at 0.1 C rate with 2.5~4.2 V the initial specific discharge capacity was 167 mAh/g with the charge-discharge efficiency 96%. When the amount of ammonia was 45 mL, the sample had the best cycle performance. At a 1 C rate of 2.5~4.2 V, after 100 cycles, the specific discharge capacity was 139mAh/g with the capacity retention 93.9%. The samples had significantly better electrochemical properties than other materials when the charge and discharge rate was low.
  • [1]
    LIU H D, WANG J, ZHANG X F, et al. Morphological evolution of high-Voltage Spinel LiNi0.5Mn1.5O4 cathode materials for lithium-ion batteries: the critical effects of surface orientations and particle size[J]. ACS Applied Materials & Interfaces, 2016, 8(7): 4661-4675.
    [2]
    HWANG T, LEE J K, MUN J, et al. Surface-modified carbon nanotube coating on high-voltage LiNi0.5Mn1.5O4 cathodes for lithium ion batteries[J]. Journal of Power Sources, 2016, 322: 40-48. doi: 10.1016/j.jpowsour.2016.04.118
    [3]
    WANG F, SUO L M, LIANG Y J, et al. Spinel LiNi0.5Mn1.5O4 cathode for high-energy aqueous lithium-ion batteries[J]. Advanced Energy Materials, 2017, 7(8): 1600922. doi: 10.1002/aenm.201600922
    [4]
    SUN W W, LI Y, XIE K, et al. Constructing hierarchical urchin-like LiNi0.5Mn1.5O4 hollow spheres with exposed {111} facets as advanced cathode material for lithium-ion batteries[J]. Nano Energy, 2018, 54: 175-183. doi: 10.1016/j.nanoen.2018.10.006
    [5]
    BHUVANESWARI S, VARADARAJU U V, GOPALAN R, et al. Sc-doping induced cation-disorder in LiNi0.5Mn1.5O4 spinel leading to improved electrochemical performance as cathode in lithium ion batteries[J]. Electrochimica Acta, 2019, 327: 135008. doi: 10.1016/j.electacta.2019.135008
    [6]
    KUENZEL M, KIM G T, ZARRABEITIA M, et al. Crystal engineering of TMPOx-coated LiNi0.5Mn1.5O4 cathodes for high-performance lithium-ion batteries[J]. Materials Today, 2020, 39: 127-136. doi: 10.1016/j.mattod.2020.04.003
    [7]
    ZHANG C C, LIU M M, PAN G J, et al. Enhanced electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode for lithium-ion batteries by precursor preoxidation[J]. ACS Applied Energy Materials, 2018, 1(8): 4374-4384. doi: 10.1021/acsaem.8b00994
    [8]
    YUAN A, TANG H, LIU L, et al. High performance of phosphorus and fluorine co-doped LiNi0.8Co0.1Mn0.1O2 as a cathode material for lithium ion batteries[J]. Journal of Alloys and Compounds, 2020, 844: 156210. doi: 10.1016/j.jallcom.2020.156210
    [9]
    PARK S M, CHO T H, YOSHIO M. Novel synthesis method for preparing layered Li[Mn1/2Ni1/2]O2 as a cathode material for lithium ion secondary battery[J]. Chemistry Letters, 2004, 33(6): 748-749. doi: 10.1246/cl.2004.748
    [10]
    MA Z, YE N Q, WU B M, et al. Influence of Cr-substitution on the electrochemical performance of LiNi0.5Mn0.5O2 cathode material for lithium ion batteries[J]. Rare Metal Materials and Engineering, 2014, 43(8): 1826-1829. doi: 10.1016/S1875-5372(14)60139-9
    [11]
    MENG X L, DOU S M, WANG W L. High power and high capacity cathode material LiNi0.5Mn0.5O2 for advanced lithium-ion batteries[J]. Journal of Power Sources, 2008, 184(2): 489-493. doi: 10.1016/j.jpowsour.2008.04.015
    [12]
    HU G R, SHI Y, FAN J, et al. Sb doping and Sb2O3 coating collaboration to improve the electrochemical performance of LiNi0.5Mn0.5O2 cathode material for lithium ion batteries[J]. Electrochimica Acta, 2020, 364: 137127. doi: 10.1016/j.electacta.2020.137127
    [13]
    钟盛文. LiNi1/3Co1/3Mn1/3O2及三元镍基梯度正极材料LiNi1-x-yCoxMnyO2的制备与性能[D]. 北京: 北京科技大学, 2007.
    [14]
    钟盛文, 赖美珍, 张华军, 等. 无钴镍基正极材料LiNi0.8Mn0.2O2的制备及电化学性能研究[J]. 电源技术, 2016, 40(5): 947-949, 976. doi: 10.3969/j.issn.1002-087X.2016.05.001
    [15]
    姚寿广, 窦飞, 刘顿, 等. Mn、Mg共掺杂Ni(OH)2的电化学性能[J]. 无机化学学报, 2021, 37(1): 95-102. https://www.cnki.com.cn/Article/CJFDTOTAL-WJHX202101011.htm
    [16]
    MA L, KANG C X, FU L K, et al. Core-shell Ni1.5Sn@Ni(OH)2 nanoflowers as battery-type supercapacitor electrodes with high rate and capacitance[J]. Journal of Colloid and Interface Science, 2022, 613: 244-255. doi: 10.1016/j.jcis.2022.01.054
    [17]
    CHEN Y H, LI Y Z, WANG G Z, et al. Synthesis and characterization of Li1.05Co0.3Ni0.35Mn0.3M0.05O2 (M=Ge, Sn) cathode materials for lithium ion battery[J]. Journal of Wuhan University of Technology-Master Sci Ed, 2012, 27(2): 212-216. doi: 10.1007/s11595-012-0439-x
    [18]
    GUO J, HU C Y. Synthesis of nanosized LiNi0.7Mn0.2Co0.1O2 cathode material for lithium ion batteries by combination method of forced hydrolytic and hydroxide coprecipitation[J]. Materials Research Innovations, 2015, 19(4): 238-243. doi: 10.1179/1433075X14Y.0000000247
    [19]
    YANG Y, LI S, ZHANG Q, et al. Spherical agglomeration of octahedral LiNi0.5Co4xMn1.5-3xO4 cathode material prepared by a continuous coprecipitation method for 5 V lithium-ion batteries[J]. Industrial & Engineering Chemistry Researc, 2017, 56(1): 175-182.
    [20]
    董鹏, 张英杰, 刘嘉铭, 等. 纳米磷酸铁包覆锂离子电池正极材料LiNi0.5Co0.2Mn0.3O2的制备及其电化学性能[J]. 材料工程, 2017, 45(11): 49-57. doi: 10.11868/j.issn.1001-4381.2015.001257
    [21]
    HE W X, LIU J G, SUN W, et al. Coprecipitation-gel synthesis and degradation mechanism of octahedral Li1.2Mn0.54Ni0.13Co0.13O2 as high-performance cathode materials for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(27): 23018-23028.
    [22]
    LI L N, HAN E S, ZHU L Z, et al. Effect of Zr doping and Al-Zr co-doping on LiNi0.5Co0.25Mn0.25O2 for lithium-ion batteries[J]. Solid State Ionics, 2020, 346.
    [23]
    DONG H X, KOENIG G M. A review on synthesis and engineering of crystal precursors produced via coprecipitation for multicomponent lithium-ion battery cathode materials[J]. Cryst Eng Comm, 2020, 22(9): 1514-1530. doi: 10.1039/C9CE00679F
    [24]
    LIU H S, YANG Y, ZHANG J. Investigation and improvement on the storage property of LiNi0.8Co0.2O2 as a cathode material for lithium-ion batteries[J]. Journal of Power Sources, 2006, 162(1): 644-650. doi: 10.1016/j.jpowsour.2006.07.028
    [25]
    TANG H W, ZHU Z H, CHANG Z R, et al. Synthesis and electrochemical properties of high-density LiNi0.8Co0.2O2 for the lithium-ion-battery cathode[J]. Electrochemical and Solid State Letters, 2008, 11(3): 34-37.
    [26]
    WANG Y, ROLLER J, MARIC R. Direct dry synthesis of thin nanostructured LiNi0.8Co0.2O2 film for lithium ion micro-battery cathodes[J]. Electrochimica Acta, 2017, 241: 510-516. doi: 10.1016/j.electacta.2017.04.136
    [27]
    JIA H L, ZHU W C, XU Z H, et al. Precursor effects on structural ordering and electrochemical performances of Ni-rich layered LiNi0.8Co0.2O2 cathode materials for high-rate lithium ion batteries[J]. Electrochimica Acta, 2018, 266: 7-16. doi: 10.1016/j.electacta.2018.02.027
  • Related Articles

    [1]XIA Dingfeng, ZHOU Miaomiao, GUO Qiankun, HU Shun, ZOU Jin, ZHONG Shengwen. Effect of graphene composite conductor on kinetic and electrochemical properties of LiNi0.5Co0.2Mn0.3O2[J]. Nonferrous Metals Science and Engineering, 2022, 13(3): 35-42. DOI: 10.13264/j.cnki.ysjskx.2022.03.005
    [2]RAO Xianfa, LI Baobao, LOU Yitao, HUANG Jinchao, WU Tingting, QIU Yuping, WANG Jiang, SHI Xuanbo, ZHONG Shengwen. Preparation and performance comparison of single crystal LiNi0.8Co0.1Mn0.1O2 cathode materials[J]. Nonferrous Metals Science and Engineering, 2021, 12(4): 42-50. DOI: 10.13264/j.cnki.ysjskx.2021.04.006
    [3]HUANG Qingyan, LIANG Yali, WANG Junrong, XIE Guangming, WANG Chunxiang, LI Zhifeng. Effect of sintering temperature on properties of LiNi0.8Co0.1Mn0.1O2 material synthesized by sol-gel method[J]. Nonferrous Metals Science and Engineering, 2020, 11(6): 64-70. DOI: 10.13264/j.cnki.ysjskx.2020.06.009
    [4]LIU Zhijun, PENG Wanwan, LI Zhifeng, WANG Chunxiang, ZHANG Qian, ZHONG Shengwen. Effect of niobium doping on the electrochemical performance of nickel-based cathode materials[J]. Nonferrous Metals Science and Engineering, 2020, 11(2): 89-96. DOI: 10.13264/j.cnki.ysjskx.2020.02.013
    [5]LAN Chaobo, ZHANG Qian, QIU Shitao, MENG Fuhai, WU Lijue, ZHONG Shengwen. Study on high-voltage cathode material LiNi0.5Co0.2Mn0.3O2[J]. Nonferrous Metals Science and Engineering, 2019, 10(4): 72-77. DOI: 10.13264/j.cnki.ysjskx.2019.04.012
    [6]TIAN Feng, NIE Wei, GUO Qiankun, WU Lijue, LIANG Weichun, FU Haikuo, ZHONG Shengwen. Preparation of carbon nanotube conductive paste and its effect on electrochemical performance of LiNi0.8Co0.1Mn0.1O2[J]. Nonferrous Metals Science and Engineering, 2019, 10(2): 62-67. DOI: 10.13264/j.cnki.ysjskx.2019.02.009
    [7]QIU Shitao, ZHONG Shengwen, LI Tingting, YANG Jinmeng, TIAN Feng. Study on the electrochemical performance of Cu-added LiNi0.6Co0.2Mn0.2O2[J]. Nonferrous Metals Science and Engineering, 2018, 9(5): 21-25. DOI: 10.13264/j.cnki.ysjskx.2018.05.004
    [8]LAI Jianghong, ZHONG Shengwen, GUO Jinkang, LYU Qingwen, LUO Chuiyi, LI Dong. Synthesis and characterization of LiNi1/3Co1/3Mn1/3O2 cathode materials[J]. Nonferrous Metals Science and Engineering, 2017, 8(4): 68-72. DOI: 10.13264/j.cnki.ysjskx.2017.04.012
    [9]LV Qingwen, YIN Congling, ZHONG Shengwen, DING Nengwen, LAI Jianghong, LUO Chuiyi, FAN Fengsong. Synthesis and characterization of LiNi0.6Co0.1Mn0.3O2 cathode materials[J]. Nonferrous Metals Science and Engineering, 2016, 7(4): 50-54. DOI: 10.13264/j.cnki.ysjskx.2016.04.009
    [10]ZHONG Sheng-wen, ZHONG Feng-di, ZHANG Qian. Synthesis and Al-doping properties of lithium-ion cathode materials LiNi0.5Mn0.3Co0.2O2[J]. Nonferrous Metals Science and Engineering, 2013, 4(4): 11-16. DOI: 10.13264/j.cnki.ysjskx.2013.04.002
  • Cited by

    Periodical cited type(4)

    1. 倪武帆,邓思雨,甘宋国. 贸易政策不确定性对制造业出口绩效的影响. 北方经贸. 2023(09): 26-29 .
    2. 王国钰,曹希绅,周进生. 基于DEA-Tobit模型的中国有色金属矿采选业上市公司经营效率和影响因素研究. 中国矿业. 2022(01): 41-50 .
    3. 许译心,王小茜,路增祥. 基于CAPM模型改进的采矿权评估方法. 有色金属科学与工程. 2022(05): 108-113 . 本站查看
    4. 邬建辉,陈小松,谌思磊,王翊民,严润. 铜锰渣酸浸及选择性硫化沉淀法回收铜工艺. 有色金属科学与工程. 2021(03): 70-76 . 本站查看

    Other cited types(11)

Catalog

    Article Metrics

    Article views (228) PDF downloads (28) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return