Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
QIU Shitao, ZHONG Shengwen, LI Tingting, YANG Jinmeng, TIAN Feng. Study on the electrochemical performance of Cu-added LiNi0.6Co0.2Mn0.2O2[J]. Nonferrous Metals Science and Engineering, 2018, 9(5): 21-25. DOI: 10.13264/j.cnki.ysjskx.2018.05.004
Citation: QIU Shitao, ZHONG Shengwen, LI Tingting, YANG Jinmeng, TIAN Feng. Study on the electrochemical performance of Cu-added LiNi0.6Co0.2Mn0.2O2[J]. Nonferrous Metals Science and Engineering, 2018, 9(5): 21-25. DOI: 10.13264/j.cnki.ysjskx.2018.05.004

Study on the electrochemical performance of Cu-added LiNi0.6Co0.2Mn0.2O2

More Information
  • Received Date: July 12, 2018
  • Published Date: October 30, 2018
  • The precursor was prepared by co-precipitation and Li (Ni0.6Co0.2Mn0.2)1-xCuxO2 (x=0, 0.01, 0.015 and 0.02) was synthesized by high temperature solid-state reaction. In this study, the structure, morphology and electrochemical properties of Li (Ni0.6Co0.2Mn0.2)1-xCuxO2 were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), battery test system (BTS) and electrochemical workstation. The results showed that, with a small amount of Cu, α-NaFeO2type structure was formed in all the samples with no impurities; the peak splitting of the sample (108)/(110) was obvious with a good layered structure; then, with the increase of Cu, c and c/a, interlayer distance and the deintercalation channels of Li+ all increased, so the conductivity improved. The ratios of I(003)/I(104) were 1.467 and 1.438, respectively, with 1 % Cu and 1.5 % Cu, higher than the ratio of 1.431 without any addition of Cu and at the same time reducing cation mixing. The specific discharge capacities for the first time were 170.6, 164.1, 163.6 and 162.4 mAh/g, respectively. When x was 0, 1 %, 2 % after 100 cycles, the retention rates were 87.1 %, 98.7 %, and 87.7 %, respectively; when x was 1.5 %, the specific capacity increasing from 161.8 to 173.9 mAh/g, Li(Ni0.6Co0.2Mn0.2)1-xCuxO2 obtained its best electrochemical performance.
  • [1]
    徐悦斌, 钟胜奎, 张倩. Ti掺杂LiNi0.6Co0.2Mn0.2O2的制备及电化学性能[C]//中国功能材料及其应用学术会议.长沙: 中南大学出版社, 2010. http://www.wanfangdata.com.cn/details/detail.do?_type=conference&id=7340619
    [2]
    张芸.锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2的合成及其电化学性能研究[D].南京: 南京工业大学, 2016. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y3107918
    [3]
    袁晶.锂离子电池正极材料LiNi0.6Co0.2Mn0.2O2的合成与改性[D].合肥: 合肥工业大学, 2017. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y3235389
    [4]
    吕庆文.高容量镍基正极材料LiNi0.9Mn0.1O2的合成及改性研究[D].赣州: 江西理工大学, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10407-1017223375.htm
    [5]
    卢道焕, 胡明超, 黄瑞鸿, 等.锂离子电池材料LiNi0.6Co0.2Mn0.2O2的制备与性能研究[J].中国锰业, 2017(增刊1):47-50. http://d.old.wanfangdata.com.cn/Periodical/zgmengy2017z1014
    [6]
    吕庆文, 尹从岭, 钟盛文, 等. LiNi0.6Co0.1Mn0.3O2正极材料的合成与性能[J].有色金属科学与工程, 2016, 7(4):50-54. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=20160409
    [7]
    李龙.锂离子电池镍钴锰三元正极材料的合成与改性研究[D].北京: 清华大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10003-1013016902.htm
    [8]
    PENG Y, WANG Z, PENG W, et al. Spray-drying synthesized LiNi0.6Co0.2Mn0.2O2 and its electrochemical performance as cathode materials for lithium ion batteries[J]. Powder Technology, 2011, 214(3):279-282. doi: 10.1016/j.powtec.2011.08.022
    [9]
    Cheng K L, Mu D B, Wu B R, et al. Electrochemical performance of a nickel-rich LiNi0.6Co0.2Mn0.2O2 cathode material for lithium-ion batteries under different cut-off voltages[J]. International Journal of Minerals Metallurgy and Materials, 2017, 24(3):342-351. doi: 10.1007/s12613-017-1413-6
    [10]
    YUAN J, WEN J, ZHANG J, et al. Influence of calcination atmosphere on structure and electrochemical behavior of LiNi0.6Co0.2Mn0.2O2, cathode material for lithium-ion batteries[J]. Electrochimica Acta, 2017, 230:116-122. doi: 10.1016/j.electacta.2017.01.102
    [11]
    LEI W, MU D B, WU B R, et al. Enhanced electrochemical performance of lithium metasilicate-coated LiNi0.6Co0.2Mn0.2O2, Ni-rich cathode for Li-ion batteries at high cutoff voltage[J]. Electrochimica Acta, 2016, 222:806-813. doi: 10.1016/j.electacta.2016.11.041
    [12]
    陈亮, 唐新村, 张阳, 等.从废旧锂离子电池中分离回收钴镍锰[J].中国有色金属学报, 2011, 21(5):1192-1198. http://d.old.wanfangdata.com.cn/Periodical/zgysjsxb201105038
    [13]
    陈亮.废旧锂离子电池中有色金属资源化回收利用研究[D].长沙: 中南大学, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10533-1011182062.htm
    [14]
    王东, 吴照金. Cu掺杂对锂离子电池正极材料Li[Ni1/3Co1/3Mn1/3] O2的影响[J].当代化工, 2015(10):2335-2337. doi: 10.3969/j.issn.1671-0460.2015.10.019
    [15]
    HUANG Y, WANG Z X, LI X H, et al. Synthesis of Ni0.8Co0.1Mn0.1(OH)2, precursor and electrochemical performance of LiNi0.8Co0.1Mn0.1O2, cathode material for lithium batteries[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(7):2253-2259. doi: 10.1016/S1003-6326(15)63838-9
    [16]
    CHEN Y, ZHANG Y, CHEN B, et al. An approach to application for LiNi0.6Co0.2Mn0.2O2, cathode material at high cutoff voltage by TiO2, coating[J]. Journal of Power Sources, 2014, 256(12):20-27. http://www.sciencedirect.com/science/article/pii/S0378775314000858
    [17]
    赖江洪, 钟盛文, 郭进康, 等. LiNi1/3Co1/3Mn1/3O2正极材料的合成与性能[J].有色金属科学与工程, 2017, 8(4):68-72. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201704012
    [18]
    陆雷, 钟伟攀, 杨晖.高致密球形LiNi0.8Co0.1Mn0.1O2颗粒的合成及性能研究[J].无机材料学报, 2012, 27(3):258-264. http://www.cnki.com.cn/Article/CJFDTOTAL-WGCL201203008.htm
    [19]
    郑卓, 吴振国, 向伟, 等. Na+掺杂锂离子电池正极材料LiNi0.6Co0.2Mn0.2O2的制备及电化学性能[J].高等学校化学学报, 2017, 38(8):1458-1464. http://d.old.wanfangdata.com.cn/Periodical/gdxxhxxb201708022
    [20]
    YUAN J, WEN J, ZHANG J, et al. Influence of calcination atmosphere on structure and electrochemical behavior of LiNi0.6Co0.2Mn0.2O2, cathode material for lithium-ion batteries[J]. Electrochimica Acta, 2017, 230:116-122. doi: 10.1016/j.electacta.2017.01.102
    [21]
    夏云飞.层状三元材料LiNi0.6Co0.2Mn0.2O2的烧结工艺及其Al离子掺杂改性研究[D].哈尔滨: 哈尔滨工业大学, 2015. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D754719
    [22]
    郝晶敏, 刘海萍, 吉元鹏, 等.锡掺杂LiNi0.5Mn1.5O4锂离子电池高电压正极材料的制备及性能研究(英文)[J]. Science China Materials, 2017(4):315-323. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=SCMA201704004&dbname=CJFD&dbcode=CJFQ
  • Cited by

    Periodical cited type(11)

    1. 陈佳兴,苏子龙,赵挺,蒲刚刚,李昂,王略. 高功率型锂离子电池正极材料性能研究. 稀有金属. 2023(12): 1756-1764 .
    2. 邢晓轲,卫世乾. 高镍正极材料LiNi_(0.6)Co_(0.2)Mn_(0.2)O_2的研究进展. 化工新型材料. 2021(03): 48-52 .
    3. 付宇坤,曾敏,饶先发,钟盛文,张慧娟,姚文俐. 锂离子电池高镍LiNi_(0.8)Mn_(0.2)O_2正极材料的微波合成及其Co、Al共改性. 无机材料学报. 2021(07): 718-727 .
    4. 谢益林,孔江榕,潘迪,刘欣楠,周涛. 固体氧化物电解池La_(0.75)Sr_(0.25)Cr_(0.5)Mn_(0.5)O_(3-δ)-Ce_(0.8)Gd_(0.2)O_(2-δ)梯度型复合阴极制备及性能研究. 稀有金属. 2021(11): 1343-1351 .
    5. 翁雅青,王爽,胡银,晏南富,曹才放. 多离子共掺杂对三元正极材料性能的影响. 电源技术. 2020(04): 477-481 .
    6. 陈绍军,丁波,李春来. 高镍三元正极材料LiNi_(0.6)Co_(0.2)Mn_(0.2)O_2的合成及改进研究进展. 惠州学院学报. 2020(03): 47-52 .
    7. 郭乾坤,黄吉丽,周苗苗,胡顺,钟盛文. 单晶LiNi_(0.83)Co_(0.1)Mn_(0.07)O_2正极材料的合成及电化学性能. 有色金属科学与工程. 2020(04): 23-28 . 本站查看
    8. 刘志亮,李小林,雷超,李栋,王春香,陈敬波,钟盛文. W掺杂改性富锂锰层状正极材料. 有色金属科学与工程. 2020(06): 57-63 . 本站查看
    9. 胡伟,钟盛文,李晓艳,黄景彪,彭康春,饶先发,邱世涛. LiNi_(0.55)Co_(0.15)Mn_(0.30)O_2三元正极材料的合成及电化学性能研究. 有色金属科学与工程. 2019(03): 54-57 . 本站查看
    10. 兰超波,张骞,邱世涛,蒙福海,吴理觉,钟盛文. LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料的高电压研究. 有色金属科学与工程. 2019(04): 72-77 . 本站查看
    11. 周苗苗,李婷婷,黄吉丽,郭乾坤,钟盛文. P2型锰基钠离子正极材料的制备与改性. 有色金属科学与工程. 2019(05): 61-66 . 本站查看

    Other cited types(4)

Catalog

    Article Metrics

    Article views (99) PDF downloads (2) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return