Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
LIU Zhijun, PENG Wanwan, LI Zhifeng, WANG Chunxiang, ZHANG Qian, ZHONG Shengwen. Effect of niobium doping on the electrochemical performance of nickel-based cathode materials[J]. Nonferrous Metals Science and Engineering, 2020, 11(2): 89-96. DOI: 10.13264/j.cnki.ysjskx.2020.02.013
Citation: LIU Zhijun, PENG Wanwan, LI Zhifeng, WANG Chunxiang, ZHANG Qian, ZHONG Shengwen. Effect of niobium doping on the electrochemical performance of nickel-based cathode materials[J]. Nonferrous Metals Science and Engineering, 2020, 11(2): 89-96. DOI: 10.13264/j.cnki.ysjskx.2020.02.013

Effect of niobium doping on the electrochemical performance of nickel-based cathode materials

More Information
  • Received Date: January 09, 2020
  • Published Date: April 29, 2020
  • To find out the way to maintain the electrochemical cycle stability and the high-temperature performance of nickel-based cathode materials LiNi0.8Co0.1Mn0.1O2 is the key to its wide application to industry. This paper focuses on the improvement of the electrochemical properties of nickel-based cathode materials by doping niobium. The cathode materials of Li(Ni0.8Co0.1Mn0.1)1-xNbxO2x = 0, 0.01, 0.02, 0.03) were synthesized by calcining the mixtures of LiOH·H2O, Nb2O5 and the ternary material sphericalNi0.8Co0.1Mn0.1(OH) 2 precursor which was made from sulphate by co-precipitation method in N2 atmosphere. The XRD results showed that small amount of the Nb5+ ions could dope into the cathode materials’ lattice and formed Li3NbO4with stable chemical properties on the surface of the cathode materials. When x was 0.02, the special capacity of the first discharge was 172.9 mAh/g and the capacity retention rate was 97.47% after 100 cycles at 25℃, within the voltage range of 2.75~4.2 V and with the ratio of 0.2 C. At 50℃and with the ratio of 0.5 C, the capacity retention rate changed little after 100 cycles and the average discharge specific capacity was 183.7 mAh/g. Moreover, the sample had good rate performance.
  • [1]
    CHEN J J. Recent progress in advanced materials for lithium ion batteries[J]. Materials, 2013, 6(1): 156-183. http://d.old.wanfangdata.com.cn/Periodical/wnkb-e201804012
    [2]
    胡伟,钟盛文,李晓艳,等. LiNi0.55Co0.15Mn0.3O2三元正极材料的合成及电化学性能研究[J]. 有色金属科学与工程, 2019, 10(3): 54-57. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201903009
    [3]
    ZHANG J, ZHANG J, OU X, et al. Enhancing high-Voltage performance of Ni-Rich cathode by surface modification of self-assembled NASICON fast Ionic Conductor LiZr2(PO4)3[J]. ACS Appl Mater Interfaces, 2019, 11(17): 15507-15516. doi: 10.1021/acsami.9b00389
    [4]
    ZHANG M L, ZHAO H, TAN M, et al. Yttrium modified Ni-rich LiNi0.8Co0.1Mn0.1O2 with enhanced electrochemical performance as high energy density cathode material at 4.5 V high voltage[J]. Journal of Alloys and Compounds, 2019, 774(5): 82-92. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5107c78839fbe68168c9d86df20a09c8
    [5]
    AURBACH D, SRUR-LAVI O, GHANTY C, et al. Studies of aluminum-doped LiNi0.5Co0.2Mn0.3O2: Electrochemical behavior, aging, structural transformations, and thermal characteristics[J]. Journal of The Electrochemical Society, 2015, 162(6): A1014-A1027. doi: 10.1149/2.0681506jes
    [6]
    YANG Z R, BAO L, LI W K, et al. Synthesizing LiNi0.8Co0.1Mn0.1O2 with novel shell-pore structure for enhanced rate performance[J]. Journal of Alloys and Compounds, 2019, 789: 736-743. doi: 10.1016/j.jallcom.2019.03.125
    [7]
    LU M, HAN E, ZHU L, et al. The effects of Ti4+-Fe3+ co-doping on Li[Ni1/3Co1/3Mn1/3]O2[J]. Solid State Ionics, 2016, 298: 9-14. doi: 10.1016/j.ssi.2016.10.014
    [8]
    HUANG Y, WANG Z X, LI X H, et al. Synthesis of Ni0.8Co0.1Mn0.1(OH)2 precursor and electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode material for lithium batteries[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(7): 2253-2259. doi: 10.1016/S1003-6326(15)63838-9
    [9]
    LI X, ZHANG K, WANG M, et al. Dual functions of zirconium modification on improving the electrochemical performance of Ni-rich LiNi0.8Co0.1Mn0.1O2[J]. Sustain. Energy Fuels, 2018, 2(2): 413-421. doi: 10.1039/C7SE00513J
    [10]
    MANTHIRAM A, SONG B H, Li W D. A perspective on nickel-rich layered oxide cathodes for lithium-ion batteries[J]. Energy Storage Materials, 2017, 6: 125–139. doi: 10.1016/j.ensm.2016.10.007
    [11]
    FAN G X, LIU Z P, WEN Y, et al. Surface treatment on structure and property of LiNi0.8Co0.15Al0.05O2 by silane coupling agent[J]. Journal of Inorganic Materials, 2018, 33(7): 749-755. doi: 10.15541/jim20170461
    [12]
    LI X, GE W J, WANG H, et al. Research progress on the capacity fading mechanisms of high-nickel ternary layered oxide cathode materials[J]. Journal of Inorganic Materials, 2017, 32(2): 114-121. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wjclxb201702001
    [13]
    LEE S H, YOON C S, AMINE K, et al. Improvement of long-term cycling performance of Li[Ni0.8Co0.15Al0.05]O2 by AlF3 coating[J]. Journal of Power Sources, 2013, 234(15): 201-207. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=967a08f471a80904156c07f708283e48
    [14]
    YANG K, LI Z F, GUO J, et al. Significant improvement of electrochemical properties of AlF3-coated LiNi0.5Co0.2Mn0.3O2 cathode materials[J]. Electrochimica Acta, 2012, 63(29): 363-368. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=96caa15fb119d44a2a627247c47cc88d
    [15]
    LIU W, LI X F, XIONG D B, et al. Significantly improving cycling performance of cathodes in lithium ion batteries: the effect of Al2O3 and LiAlO2 coatings on LiNi0.6Co0.2Mn0.2O2[J]. Nano Energy, 2018, 44: 111-120. doi: 10.1016/j.nanoen.2017.11.010
    [16]
    WANG J P, DU C Y, YAN C Q, et al. Al2O3 coated concentration-cradient Li[Ni0.73Co0.12Mn0.15]O2 cathode material by freeze drying for long-life lithium ion batteries[J]. Electrochimica Acta, 2015, 174(20): 1185-1191. https://www.researchgate.net/publication/281751500_Al2O3_Coated_Concentration-Gradient_LiNi073Co012Mn015O2_Cathode_Material_by_Freeze_Drying_for_Long-Life_Lithium_Ion_Batteries
    [17]
    DAI G L, DU H J, WANG S S, et al. Improved electrochemical performance of LiNi0.8Co0.15Al0.05O2 with ultrathin and thickness controlled TiO2 shell via atomic layer deposition technology[J]. RSC Adv, 2016, 6(103): 100841-100848. doi: 10.1039/C6RA21903A
    [18]
    LAI Y Q, XU M, ZHANG Z A, et al. Optimized structure stability and electrochemical performance of LiNi0.8Co0.15Al0.05O2 by sputtering nanoscale ZnO film[J]. Journal of Power Sources, 2016, 309(31): 20-26. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=18bb8f713e665184f7283b3c5347f0bf
    [19]
    XUE L L, LI Y J, XU B, et al. Effect of Mo doping on the structure and electrochemical performances of LiNi0.6Co0.2Mn0.2O2 cathode material at high cut-off voltage[J]. Journal of Alloys and Compounds, 2018, 748(5): 561-568. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8bddae625d1e1a6ff8b9c71378c884b2
    [20]
    SCHIPPER F, DIXIT M, KOVACHEVA D, et al. Stabilizing nickel-rich layered cathode materials by a high charge cation doping strategy: zirconium-doped LiNi0.6Co0.2Mn0.2O2[J]. Royal Society of Chemistry, 2016, 41(4): 16073-16084. https://www.researchgate.net/publication/308072757_Stabilizing_Nickel-Rich_Layered_Cathode_Materials_by_a_High-Charge_Cation_Doping_Strategy_Zirconium-Doped_LiNi06Co02Mn02O2
    [21]
    YANG Z G, HUA W B, ZHANG J, et al. Enhanced electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode materials at elevated temperature by Zr Doping[J]. Acta Physico-Chimica Sinica, 2016, 32 (5): 1056-1061. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlhxxb201605008
    [22]
    CHEN Y X, LI Y J, LI W, et al. High-voltage electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode material via the synergetic modification of the Zr/Ti elements[J]. Electrochimica Acta, 2018, 281(10): 48-59. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7bb3fdbdaf1a36c639c37944f6a46659
    [23]
    林桂仙, 韩博, 黄群,等.TiO2改性提高LiNi0.8Co0.1Mn0.1O2正极材料的电化学及储存性能[J].中国材料进展, 2019, 38(5): 489-496. http://d.old.wanfangdata.com.cn/Periodical/zgcljz201905010
    [24]
    WU J F, LIU H G, YE X H, et al. Effect of Nb doping on electrochemical properties of LiNi1/3Co1/3Mn1/3O2 at high cutoff voltage for lithium-ion battery[J]. Journal of Alloys & Compounds, 2015, 644(25): 223-227. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4bf1b900576c70a802fb9699141d3457
    [25]
    YANG Z G, XIANG W X, WU Z G, et al. Effect of niobium doping on the structure and electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode materials for lithium ion batteries[J]. Ceramics International, 2017, 43(4): 3866-3872. doi: 10.1016/j.ceramint.2016.12.048
    [26]
    KANEDA H, KOSHIKA Y, NAKAMURA T, et al. Improving the cycling performance and thermal stability of LiNi0.6Co0.2Mn0.2O2 cathode materials by Nb-doping and surface modification[J]. International Journal of Electrochemical Science, 2017, 12(6): 4640-4653. https://www.researchgate.net/publication/317288793_Improving_the_Cycling_Performance_and_Thermal_Stability_of_LiNi06Co02Mn02O2_Cathode_Materials_by_Nb-doping_and_Surface_Modification
    [27]
    LI Z F, LUO C Y, WANG C X, et al. Effects of Nb substitution on structure and electrochemical properties of LiNi0.7Mn0.3O2 cathode materials[J]. Journal of Solid State Electrochemistry, 2018, 22(9): 2811-2820. doi: 10.1007/s10008-018-3975-2
    [28]
    LI J B. XU Y L, DU X F, et al. Improved electrochemical stability of Zn-doped LiNi1/3Co1/3Mn1/3O2 cathode materials[J]. Acta Phys. -Chim. Sin. 2012, 28(8): 1899-1905. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlhxxb201208015
    [29]
    张继斌, 滑纬博, 郑卓, 等. 高倍率性能锂离子电池Li[Ni1/3Co1/3Mn1/3]O2正极材料的制备及其电化学性能[J]. 物理化学学报, 2015, 31(5): 905-912. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlhxxb201505013
    [30]
    ZHANG X Y, JIANG W J, MAUGER A,et al. Aging of LiNi1/3Mn1/3Co1/3O2 cathode material upon exposure to H2O[J]. Journal of Power Sources, 2011, 196(11): 5102-5108. doi: 10.1016/j.jpowsour.2011.02.009
    [31]
    刘熙林,钟盛文,梅文捷,等. (Li1.07Ni0.4Mn0.53)1-xAlxO2正极材料的合成与性能[J]. 有色金属科学与工程, 2015, 6(5): 63-68. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201505012
    [32]
    彭弯弯. 高容量镍基正极材料LiNi0.8Co0.1Mn0.1O2的制备与改性研究[D]. 赣州:江西理工大学, 2018.
    [33]
    LI Z, HONG J H, HE G, et al. Effect of FePO4 coating on performance of Li1.2Mn0.54Ni0.13Co0.13O2 as cathode material for Li-ion battery[J]. Journal of Inorganic Materials, 2015, 30(2): 129-134. doi: 10.15541/jim20140268
    [34]
    REN X Z, LIU T, SUN L N, et al. Preparation and electrochemical performances of Li1.2Mn0.54-xNi0.13Co0.13ZrxO2 cathode materials for lithium-ion batteries[J]. Acta Phys. Chim. Sin, 2014, 30(9): 1641-1649. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlhxxb201409007
  • Related Articles

    [1]DU Mingxing, LENG Jinfeng, LI Zhanzhi, YIN Yuhu. Effect of trace Er and Zr addition on mechanical properties of 6082 Al alloy during solid solution-aging treatment[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 139-146. DOI: 10.13264/j.cnki.ysjskx.2024.01.017
    [2]WANG Xiaofeng, CHEN Hongjun, ZHOU Hongli, PENG Chaoqun, WANG Richu, ZENG Jing. Rheological properties of SiC suspension for direct ink writing[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 80-86. DOI: 10.13264/j.cnki.ysjskx.2024.01.010
    [3]YANG Jiguang, WANG Yihai, WU Zaihai, TONG Chuan, LI Guangbo, SONG Zepu, JING Xiaodong, GUO Jiaren, WANG Yuliang. Analysis on rheological characteristics and microstructure of high concentration filling the tailings from a gold mine[J]. Nonferrous Metals Science and Engineering, 2023, 14(2): 249-256. DOI: 10.13264/j.cnki.ysjskx.2023.02.012
    [4]LI Lyuda, HONG Xin, MAN Xucun, CHEN Qiao, ZHANG Jianbo, LIU Jinping. High temperature deformation behavior and hot processing map of Cu-Ni-Ti alloy[J]. Nonferrous Metals Science and Engineering, 2022, 13(1): 44-51. DOI: 10.13264/j.cnki.ysjskx.2022.01.006
    [5]ZHOU Langya, WANG Richu, WANG Xiaofeng, CAI Zhiyong, DONG Cuige. On the hot deformation behavior and constitutive model of SiCp/2014Al composites[J]. Nonferrous Metals Science and Engineering, 2021, 12(4): 66-74. DOI: 10.13264/j.cnki.ysjskx.2021.04.009
    [6]LI Pengfei, DENG Chiqing, LIN Xinbo, QI Liang, YAO Youfu, XU Gaolei. Research on the hot deformation of upward continuous casting TU1[J]. Nonferrous Metals Science and Engineering, 2019, 10(3): 69-74. DOI: 10.13264/j.cnki.ysjskx.2019.03.012
    [7]LIU Xin, LI Qiangfeng, WANG Zhigang, ZHANG Yinghui, XIE Jianming, LIU Weining. Hot deformation behavior and constitutive equation of low alloy micro-carbon steel[J]. Nonferrous Metals Science and Engineering, 2018, 9(4): 53-59. DOI: 10.13264/j.cnki.ysjskx.2018.04.009
    [8]CHENG Chen, LEI Min, WAN Mingpan, CAI Gang. High temperature deformation behavior of BT25 titanium alloy[J]. Nonferrous Metals Science and Engineering, 2017, 8(6): 51-56. DOI: 10.13264/j.cnki.ysjskx.2017.06.008
    [9]LUO Tao, ZHANG Liang, JIANG Liangliang, FENG Xiao. Testing on the rheological properties of the high-density slurry of the full tailings and its pipeline transportation[J]. Nonferrous Metals Science and Engineering, 2015, 6(4): 86-90. DOI: 10.13264/j.cnki.ysjskx.2015.04.018
    [10]ZHANG Ming-ming, WU Yu. On the aging behavior of Cu-Ni-Si-Zr alloy[J]. Nonferrous Metals Science and Engineering, 2012, 3(2): 12-16. DOI: 10.13264/j.cnki.ysjskx.2012.02.017
  • Cited by

    Periodical cited type(2)

    1. 朱宁远,陈秋明,陈世豪,左寿彬. TC11钛合金动态回复与动态再结晶高温本构模型研究. 有色金属科学与工程. 2024(01): 58-66 . 本站查看
    2. 翟梓棫,潘炜,梁博,刘彦涛,张永忠. 热处理对选区激光熔化制备Al-Mn-Mg-Sc-Zr合金微观组织和力学性能的影响. 稀有金属. 2024(03): 325-335 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (125) PDF downloads (10) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return