Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
LIU Zhijun, PENG Wanwan, LI Zhifeng, WANG Chunxiang, ZHANG Qian, ZHONG Shengwen. Effect of niobium doping on the electrochemical performance of nickel-based cathode materials[J]. Nonferrous Metals Science and Engineering, 2020, 11(2): 89-96. DOI: 10.13264/j.cnki.ysjskx.2020.02.013
Citation: LIU Zhijun, PENG Wanwan, LI Zhifeng, WANG Chunxiang, ZHANG Qian, ZHONG Shengwen. Effect of niobium doping on the electrochemical performance of nickel-based cathode materials[J]. Nonferrous Metals Science and Engineering, 2020, 11(2): 89-96. DOI: 10.13264/j.cnki.ysjskx.2020.02.013

Effect of niobium doping on the electrochemical performance of nickel-based cathode materials

More Information
  • Received Date: January 09, 2020
  • Published Date: April 29, 2020
  • To find out the way to maintain the electrochemical cycle stability and the high-temperature performance of nickel-based cathode materials LiNi0.8Co0.1Mn0.1O2 is the key to its wide application to industry. This paper focuses on the improvement of the electrochemical properties of nickel-based cathode materials by doping niobium. The cathode materials of Li(Ni0.8Co0.1Mn0.1)1-xNbxO2x = 0, 0.01, 0.02, 0.03) were synthesized by calcining the mixtures of LiOH·H2O, Nb2O5 and the ternary material sphericalNi0.8Co0.1Mn0.1(OH) 2 precursor which was made from sulphate by co-precipitation method in N2 atmosphere. The XRD results showed that small amount of the Nb5+ ions could dope into the cathode materials’ lattice and formed Li3NbO4with stable chemical properties on the surface of the cathode materials. When x was 0.02, the special capacity of the first discharge was 172.9 mAh/g and the capacity retention rate was 97.47% after 100 cycles at 25℃, within the voltage range of 2.75~4.2 V and with the ratio of 0.2 C. At 50℃and with the ratio of 0.5 C, the capacity retention rate changed little after 100 cycles and the average discharge specific capacity was 183.7 mAh/g. Moreover, the sample had good rate performance.
  • [1]
    CHEN J J. Recent progress in advanced materials for lithium ion batteries[J]. Materials, 2013, 6(1): 156-183. http://d.old.wanfangdata.com.cn/Periodical/wnkb-e201804012
    [2]
    胡伟,钟盛文,李晓艳,等. LiNi0.55Co0.15Mn0.3O2三元正极材料的合成及电化学性能研究[J]. 有色金属科学与工程, 2019, 10(3): 54-57. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201903009
    [3]
    ZHANG J, ZHANG J, OU X, et al. Enhancing high-Voltage performance of Ni-Rich cathode by surface modification of self-assembled NASICON fast Ionic Conductor LiZr2(PO4)3[J]. ACS Appl Mater Interfaces, 2019, 11(17): 15507-15516. doi: 10.1021/acsami.9b00389
    [4]
    ZHANG M L, ZHAO H, TAN M, et al. Yttrium modified Ni-rich LiNi0.8Co0.1Mn0.1O2 with enhanced electrochemical performance as high energy density cathode material at 4.5 V high voltage[J]. Journal of Alloys and Compounds, 2019, 774(5): 82-92. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5107c78839fbe68168c9d86df20a09c8
    [5]
    AURBACH D, SRUR-LAVI O, GHANTY C, et al. Studies of aluminum-doped LiNi0.5Co0.2Mn0.3O2: Electrochemical behavior, aging, structural transformations, and thermal characteristics[J]. Journal of The Electrochemical Society, 2015, 162(6): A1014-A1027. doi: 10.1149/2.0681506jes
    [6]
    YANG Z R, BAO L, LI W K, et al. Synthesizing LiNi0.8Co0.1Mn0.1O2 with novel shell-pore structure for enhanced rate performance[J]. Journal of Alloys and Compounds, 2019, 789: 736-743. doi: 10.1016/j.jallcom.2019.03.125
    [7]
    LU M, HAN E, ZHU L, et al. The effects of Ti4+-Fe3+ co-doping on Li[Ni1/3Co1/3Mn1/3]O2[J]. Solid State Ionics, 2016, 298: 9-14. doi: 10.1016/j.ssi.2016.10.014
    [8]
    HUANG Y, WANG Z X, LI X H, et al. Synthesis of Ni0.8Co0.1Mn0.1(OH)2 precursor and electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode material for lithium batteries[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(7): 2253-2259. doi: 10.1016/S1003-6326(15)63838-9
    [9]
    LI X, ZHANG K, WANG M, et al. Dual functions of zirconium modification on improving the electrochemical performance of Ni-rich LiNi0.8Co0.1Mn0.1O2[J]. Sustain. Energy Fuels, 2018, 2(2): 413-421. doi: 10.1039/C7SE00513J
    [10]
    MANTHIRAM A, SONG B H, Li W D. A perspective on nickel-rich layered oxide cathodes for lithium-ion batteries[J]. Energy Storage Materials, 2017, 6: 125–139. doi: 10.1016/j.ensm.2016.10.007
    [11]
    FAN G X, LIU Z P, WEN Y, et al. Surface treatment on structure and property of LiNi0.8Co0.15Al0.05O2 by silane coupling agent[J]. Journal of Inorganic Materials, 2018, 33(7): 749-755. doi: 10.15541/jim20170461
    [12]
    LI X, GE W J, WANG H, et al. Research progress on the capacity fading mechanisms of high-nickel ternary layered oxide cathode materials[J]. Journal of Inorganic Materials, 2017, 32(2): 114-121. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wjclxb201702001
    [13]
    LEE S H, YOON C S, AMINE K, et al. Improvement of long-term cycling performance of Li[Ni0.8Co0.15Al0.05]O2 by AlF3 coating[J]. Journal of Power Sources, 2013, 234(15): 201-207. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=967a08f471a80904156c07f708283e48
    [14]
    YANG K, LI Z F, GUO J, et al. Significant improvement of electrochemical properties of AlF3-coated LiNi0.5Co0.2Mn0.3O2 cathode materials[J]. Electrochimica Acta, 2012, 63(29): 363-368. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=96caa15fb119d44a2a627247c47cc88d
    [15]
    LIU W, LI X F, XIONG D B, et al. Significantly improving cycling performance of cathodes in lithium ion batteries: the effect of Al2O3 and LiAlO2 coatings on LiNi0.6Co0.2Mn0.2O2[J]. Nano Energy, 2018, 44: 111-120. doi: 10.1016/j.nanoen.2017.11.010
    [16]
    WANG J P, DU C Y, YAN C Q, et al. Al2O3 coated concentration-cradient Li[Ni0.73Co0.12Mn0.15]O2 cathode material by freeze drying for long-life lithium ion batteries[J]. Electrochimica Acta, 2015, 174(20): 1185-1191. https://www.researchgate.net/publication/281751500_Al2O3_Coated_Concentration-Gradient_LiNi073Co012Mn015O2_Cathode_Material_by_Freeze_Drying_for_Long-Life_Lithium_Ion_Batteries
    [17]
    DAI G L, DU H J, WANG S S, et al. Improved electrochemical performance of LiNi0.8Co0.15Al0.05O2 with ultrathin and thickness controlled TiO2 shell via atomic layer deposition technology[J]. RSC Adv, 2016, 6(103): 100841-100848. doi: 10.1039/C6RA21903A
    [18]
    LAI Y Q, XU M, ZHANG Z A, et al. Optimized structure stability and electrochemical performance of LiNi0.8Co0.15Al0.05O2 by sputtering nanoscale ZnO film[J]. Journal of Power Sources, 2016, 309(31): 20-26. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=18bb8f713e665184f7283b3c5347f0bf
    [19]
    XUE L L, LI Y J, XU B, et al. Effect of Mo doping on the structure and electrochemical performances of LiNi0.6Co0.2Mn0.2O2 cathode material at high cut-off voltage[J]. Journal of Alloys and Compounds, 2018, 748(5): 561-568. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8bddae625d1e1a6ff8b9c71378c884b2
    [20]
    SCHIPPER F, DIXIT M, KOVACHEVA D, et al. Stabilizing nickel-rich layered cathode materials by a high charge cation doping strategy: zirconium-doped LiNi0.6Co0.2Mn0.2O2[J]. Royal Society of Chemistry, 2016, 41(4): 16073-16084. https://www.researchgate.net/publication/308072757_Stabilizing_Nickel-Rich_Layered_Cathode_Materials_by_a_High-Charge_Cation_Doping_Strategy_Zirconium-Doped_LiNi06Co02Mn02O2
    [21]
    YANG Z G, HUA W B, ZHANG J, et al. Enhanced electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode materials at elevated temperature by Zr Doping[J]. Acta Physico-Chimica Sinica, 2016, 32 (5): 1056-1061. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlhxxb201605008
    [22]
    CHEN Y X, LI Y J, LI W, et al. High-voltage electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode material via the synergetic modification of the Zr/Ti elements[J]. Electrochimica Acta, 2018, 281(10): 48-59. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7bb3fdbdaf1a36c639c37944f6a46659
    [23]
    林桂仙, 韩博, 黄群,等.TiO2改性提高LiNi0.8Co0.1Mn0.1O2正极材料的电化学及储存性能[J].中国材料进展, 2019, 38(5): 489-496. http://d.old.wanfangdata.com.cn/Periodical/zgcljz201905010
    [24]
    WU J F, LIU H G, YE X H, et al. Effect of Nb doping on electrochemical properties of LiNi1/3Co1/3Mn1/3O2 at high cutoff voltage for lithium-ion battery[J]. Journal of Alloys & Compounds, 2015, 644(25): 223-227. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4bf1b900576c70a802fb9699141d3457
    [25]
    YANG Z G, XIANG W X, WU Z G, et al. Effect of niobium doping on the structure and electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode materials for lithium ion batteries[J]. Ceramics International, 2017, 43(4): 3866-3872. doi: 10.1016/j.ceramint.2016.12.048
    [26]
    KANEDA H, KOSHIKA Y, NAKAMURA T, et al. Improving the cycling performance and thermal stability of LiNi0.6Co0.2Mn0.2O2 cathode materials by Nb-doping and surface modification[J]. International Journal of Electrochemical Science, 2017, 12(6): 4640-4653. https://www.researchgate.net/publication/317288793_Improving_the_Cycling_Performance_and_Thermal_Stability_of_LiNi06Co02Mn02O2_Cathode_Materials_by_Nb-doping_and_Surface_Modification
    [27]
    LI Z F, LUO C Y, WANG C X, et al. Effects of Nb substitution on structure and electrochemical properties of LiNi0.7Mn0.3O2 cathode materials[J]. Journal of Solid State Electrochemistry, 2018, 22(9): 2811-2820. doi: 10.1007/s10008-018-3975-2
    [28]
    LI J B. XU Y L, DU X F, et al. Improved electrochemical stability of Zn-doped LiNi1/3Co1/3Mn1/3O2 cathode materials[J]. Acta Phys. -Chim. Sin. 2012, 28(8): 1899-1905. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlhxxb201208015
    [29]
    张继斌, 滑纬博, 郑卓, 等. 高倍率性能锂离子电池Li[Ni1/3Co1/3Mn1/3]O2正极材料的制备及其电化学性能[J]. 物理化学学报, 2015, 31(5): 905-912. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlhxxb201505013
    [30]
    ZHANG X Y, JIANG W J, MAUGER A,et al. Aging of LiNi1/3Mn1/3Co1/3O2 cathode material upon exposure to H2O[J]. Journal of Power Sources, 2011, 196(11): 5102-5108. doi: 10.1016/j.jpowsour.2011.02.009
    [31]
    刘熙林,钟盛文,梅文捷,等. (Li1.07Ni0.4Mn0.53)1-xAlxO2正极材料的合成与性能[J]. 有色金属科学与工程, 2015, 6(5): 63-68. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201505012
    [32]
    彭弯弯. 高容量镍基正极材料LiNi0.8Co0.1Mn0.1O2的制备与改性研究[D]. 赣州:江西理工大学, 2018.
    [33]
    LI Z, HONG J H, HE G, et al. Effect of FePO4 coating on performance of Li1.2Mn0.54Ni0.13Co0.13O2 as cathode material for Li-ion battery[J]. Journal of Inorganic Materials, 2015, 30(2): 129-134. doi: 10.15541/jim20140268
    [34]
    REN X Z, LIU T, SUN L N, et al. Preparation and electrochemical performances of Li1.2Mn0.54-xNi0.13Co0.13ZrxO2 cathode materials for lithium-ion batteries[J]. Acta Phys. Chim. Sin, 2014, 30(9): 1641-1649. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlhxxb201409007
  • Cited by

    Periodical cited type(3)

    1. 符彪,颜昊坤,李仁富,冯刘振,余依棋,廖金生. 稀土掺杂铌酸钆白光上转换发光材料的构筑与发光机理. 有色金属科学与工程. 2024(05): 774-780 . 本站查看
    2. 彭弯弯,饶先发,王春香,夏鼎峰,郑东豪,周杰,杨浩,李之锋. Na、Zr复合改性提高LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2正极材料理化性能. 有色金属科学与工程. 2022(05): 60-67+139 . 本站查看
    3. 黄庆研,梁雅莉,王俊荣,谢光明,王春香,李之锋. 烧成温度对溶胶凝胶法合成LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2材料性能的影响. 有色金属科学与工程. 2020(06): 64-70 . 本站查看

    Other cited types(2)

Catalog

    Article Metrics

    Article views (125) PDF downloads (10) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return