Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
LAN Chaobo, ZHANG Qian, QIU Shitao, MENG Fuhai, WU Lijue, ZHONG Shengwen. Study on high-voltage cathode material LiNi0.5Co0.2Mn0.3O2[J]. Nonferrous Metals Science and Engineering, 2019, 10(4): 72-77. DOI: 10.13264/j.cnki.ysjskx.2019.04.012
Citation: LAN Chaobo, ZHANG Qian, QIU Shitao, MENG Fuhai, WU Lijue, ZHONG Shengwen. Study on high-voltage cathode material LiNi0.5Co0.2Mn0.3O2[J]. Nonferrous Metals Science and Engineering, 2019, 10(4): 72-77. DOI: 10.13264/j.cnki.ysjskx.2019.04.012

Study on high-voltage cathode material LiNi0.5Co0.2Mn0.3O2

More Information
  • Received Date: January 06, 2019
  • Published Date: August 30, 2019
  • Soft package lithium-ion batteries were fabricated by using LiNi0.5Co0.2Mn0.3O2 as cathode material, and electrochemical tests were performed at different upper voltage limits (4.2 V, 4.25 V, 4.3 V, 4.35 V). X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to characterize the structure and morphology of the pole pieces after 100 cycles. The XRD pattern showed that the batteries after 100 cycles still had a α-NaFeO2 type structure and a layered structure. But the batteries′ I003/I104 ratio was less than 1.2 and cation disorder increased when the upper limit of voltage was 4.35 V. When the upper voltage limits was 4.2 V, 4.25 V, 4.3 V, and 4.35 V, the first discharge capacity of the batteries was 161.5 mAh/g, 162.9 mAh/g, 169.2 mAh/g, and 176.6 mAh/g, respectively. When the upper voltage limit was 4.25 V, 4.3 V and 4.35 V, the capacity was 0.87%, 4.77% and 9.35% higher than that at the upper voltage limit of 4.2 V, respectively. After 200 cycles (0.2 C), the batteries′ capability retention rate was 95.09%, 94.41%, 95.52%, and 95.56%, respectively, at the upper voltage limits of 4.2 V, 4.25 V, 4.3 V and 4.35 V. At the upper voltage limit of 4.35 V, although the batteries had cation disorder, their electrochemical performance was the best. It may be due to excessive charge injection of high valence Co ions into the Li layer. Thus, high electron conductivity was obtained when Co ions passed through the grain boundary network inside the large secondary particles.
  • [1]
    邹邦坤, 丁楚雄, 陈春华.锂离子电池三元正极材料的研究进展[J].中国科学:化学, 2014(7):1104-1115. http://d.old.wanfangdata.com.cn/Periodical/hgsbyffs201611011
    [2]
    蔡奕茗, 蔡奕荃.锂离子电池正极材料研究[J].广东化工, 2017, 44(5):136-137. doi: 10.3969/j.issn.1007-1865.2017.05.063
    [3]
    王玲, 高朋召, 李冬云, 等.锂离子电池正极材料的研究进展[J].硅酸盐通报, 2013, 32(1):32-35. http://d.old.wanfangdata.com.cn/Periodical/wjclxb200201001
    [4]
    HOLZE R. JUNG-KI P: Principles and applications of lithium secondary batteries[J]. Journal of Solid State Electrochemistry, 2013, 17(8):2375-2376. doi: 10.1007/s10008-013-2094-3
    [5]
    钟怀玉, 程波明, 罗江斌, 等.正极浆料黏度对汽车动力电池的影响[J].有色金属科学与工程, 2018, 9(2):56-61. http://ysjskx.paperopen.com/oa/darticle.aspx?type=view&id=201802010
    [6]
    AIFANTIS K E, HACKNEY S A, KUMAR R V. High energy density lithium batteries: Materials, Engineering, Applications[M]. Weinheim: John wiley & Sons, 2010.
    [7]
    WHITTINGHAM M S. Lithium batteries and cathode materials[J]. Chemical Reviews, 2004, 35(50):4271-4301. http://d.old.wanfangdata.com.cn/Periodical/zgysjsxb-e201801016
    [8]
    宋刘斌, 李新宇, 肖忠良, 等.锂离子电池正极材料LiNi0.5Co0.2Mn0.3O2研究进展[J].功能材料, 2017, 48(12):12023-12029. http://d.old.wanfangdata.com.cn/Periodical/gncl201712005
    [9]
    许军娜, 陈晓青, 高雄, 等.氧化钇包覆LiNi0.5Co0.2Mn0.3O2的结构和电化学性能[J].中国有色金属学报, 2018, 28(3):528-536. http://d.old.wanfangdata.com.cn/Periodical/zgysjsxb201803011
    [10]
    董鹏, 张英杰, 刘嘉铭, 等.纳米磷酸铁包覆锂离子电池正极材料LiNi0.5Co0.2Mn0.3O2的制备及其电化学性能[J].材料工程, 2017, 45(11):53-61. http://d.old.wanfangdata.com.cn/Periodical/clgc201711008
    [11]
    邵奕嘉, 黄斌, 刘全兵, 等.三元镍钴锰正极材料的制备及改性[J].化学进展, 2018, 30(4): 410-419. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxjz201804007
    [12]
    宋美霖, 王东晨, 罗珑玲, 等.制备工艺对LiNi0.5Co0.2Mn0.3O2正极材料微结构和电化学性能的影响[J].广西大学学报(自然科学版), 2018, 43(2):710-716. http://d.old.wanfangdata.com.cn/Periodical/gxdxxb201802031
    [13]
    ZHAO R, LIANG J, HUANG J, et al. Improving the Ni-rich LiNi0.5Co0.2Mn0.3O2, cathode properties at high operating voltage by double coating layer of Al2O3, and AlPO4[J]. Journal of Alloys and Compounds, 2017, 724: 1109-1116. doi: 10.1016/j.jallcom.2017.05.331
    [14]
    LI L, ZHANG Z, FU S, et al. Co-modification by LiAlO2-coating and Al-doping for LiNi0.5Co0.2Mn0.3O2 as a high-performance cathode material for lithium-ion batteries with a high cutoff voltage[J]. Journal of Alloys and Compounds, 2018, 768: 582-590. doi: 10.1016/j.jallcom.2018.07.223
    [15]
    ZHAO X, LIANG G, LIU H, et al. Improved conductivity and electrochemical properties of LiNi0.5Co0.2Mn0.3O2 materials via yttrium doping[J]. Rsc Advances, 2018, 8(8):4142-4152. doi: 10.1039/C7RA10222D
    [16]
    沈恒冠, 戚洪亮, 佘圣贤, 等.单晶高电压三元的制备及性能研究[J].电源技术, 2016, 40(7):1356-1358. doi: 10.3969/j.issn.1002-087X.2016.07.005
    [17]
    何湘柱, 胡燚, 邓忠德, 等.石墨烯复合导电剂SP/CNTs/G对LiNi0.5Co0.2Mn0.3O2锂离子电池性能影响[J].电子元件与材料, 2016, 35(11):77-82.
    [18]
    李婷婷, 陈炜, 冯德圣, 等.碳纳米管导电剂在三元锂离子电池中的研究[J].电源技术, 2018(6):809-811. doi: 10.3969/j.issn.1002-087X.2018.06.016
    [19]
    高坡, 张彦林, 颜健.石墨烯/碳纳米管复合导电剂对LiNi1/3Co1/3Mn1/3O2的影响[J].电池, 2017:339-342. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dc201706006
    [20]
    TRAN T T D, NGUYEN H H A, NGUYEN T T T, et al. Carbon-coated LiFePO4-carbon nanotube electrodes for high-rate Li-ion battery[J]. Journal of Solid State Electrochemistry, 2018, 22(7):2247-2254. doi: 10.1007/s10008-018-3934-y
    [21]
    邱世涛, 钟盛文, 李婷婷, 等. Cu掺杂LiNi0.6Co0.2Mn0.2O2的电化学性能[J].有色金属科学与工程, 2018, 9(5):21-26. http://ysjskx.paperopen.com/oa/darticle.aspx?type=view&id=201805005
    [22]
    ZHAO X X, LIANG G C, LIU H, et al. Improved conductivity and electrochemical properties of LiNi0.5Co0.2Mn0.3O2 materials via yttrium doping[J]. RSC Advances, 2018(8):4142-4152.
    [23]
    SHIM J H, IM J, KANG H, et al. Implications of cation-disordered grain boundary on the electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode material for lithium ion batteries[J]. Journal of Materials Chemistry A, 2018(6):16111-16120. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=296be3e292eb327ec79ab7537c73a2e1
    [24]
    AMIN R, BELHAROUK I. Part I: Electronic and ionic transport properties of the ordered and disordered LiNi0.5Mn1.5O4, spinel cathode[J]. Journal of Power Sources, 2017, 348:311-317. doi: 10.1016/j.jpowsour.2017.02.071
    [25]
    ABDELLAHI A, URBAN A, DACEK S, et al. The effect of cation disorder on the average Li intercalation voltage of transition-metal oxides[J]. Chemistry of Materials, 2016, 28(11):3659-3665. doi: 10.1021/acs.chemmater.6b00205
  • Related Articles

    [1]HUANG Jinchao, GUO Ziting, XIAO Qingmei, ZHONG Shengwen. Effect of binary composite conductive agent with graphene and carbon nanotube on performance of LiNi0.5Co0.2Mn0.3O2 lithium-ion battery[J]. Nonferrous Metals Science and Engineering, 2023, 14(3): 355-362. DOI: 10.13264/j.cnki.ysjskx.2023.03.008
    [2]GUO Ziting, HUANG Jinchao, XIAO Qingmei, ZHONG Shengwen. Effect of composite conductive agent consisting of graphene and Super-P carbon black on the performance of LiNi0.5Co0.2Mn0.3O2 lithium-ion battery[J]. Nonferrous Metals Science and Engineering, 2023, 14(2): 227-234. DOI: 10.13264/j.cnki.ysjskx.2023.02.009
    [3]LI Rui, CHEN Yu, DING Nengwen, LI Zhifeng, LI Xiaocheng. Preparation and electrochemical performance of Lithium-ion battery negative electrode material PSi@GO[J]. Nonferrous Metals Science and Engineering, 2022, 13(5): 16-22. DOI: 10.13264/j.cnki.ysjskx.2022.05.003
    [4]XIA Dingfeng, ZHOU Miaomiao, GUO Qiankun, HU Shun, ZOU Jin, ZHONG Shengwen. Effect of graphene composite conductor on kinetic and electrochemical properties of LiNi0.5Co0.2Mn0.3O2[J]. Nonferrous Metals Science and Engineering, 2022, 13(3): 35-42. DOI: 10.13264/j.cnki.ysjskx.2022.03.005
    [5]ZHONG Caini, CHEN Zheqin, LU Yanhua, LIU Jiaming, XIA Shubiao. A study on the synthesis and electrochemical properties of CuFe2O4 cubes as anode material for lithium-ion batteries[J]. Nonferrous Metals Science and Engineering, 2020, 11(3): 59-64. DOI: 10.13264/j.cnki.ysjskx.2020.03.008
    [6]HU Wei, ZHONG Shengwen, LI Xiaoyan, HUANG Jingbiao, PENG Kangchun, RAO Xianfa, QIU Shitao. The study of synthetize and electrochemical properties in LiNi0.55Co0.15Mn0.30O2 cathode material[J]. Nonferrous Metals Science and Engineering, 2019, 10(3): 54-57. DOI: 10.13264/j.cnki.ysjskx.2019.03.009
    [7]QIU Shitao, ZHONG Shengwen, LI Tingting, YANG Jinmeng, TIAN Feng. Study on the electrochemical performance of Cu-added LiNi0.6Co0.2Mn0.2O2[J]. Nonferrous Metals Science and Engineering, 2018, 9(5): 21-25. DOI: 10.13264/j.cnki.ysjskx.2018.05.004
    [8]CHEN Jun, MEI Wenjie, ZENG Min, GUO Jinkang, LIU Defang, ZHONG Shengwen. Synthesis and performance research of carboxyl substituted nickel phthalocyanine as cathode materials for lithium ion batteries[J]. Nonferrous Metals Science and Engineering, 2015, 6(5): 45-51. DOI: 10.13264/j.cnki.ysjskx.2015.05.009
    [9]HU Wei, ZHONG Shengwen, HUANG Bing. Optimizing electrochemical properties in Li-rich Mn-based cathode material[J]. Nonferrous Metals Science and Engineering, 2014, 5(4): 32-36. DOI: 10.13264/j.cnki.ysjskx.2014.04.007
    [10]ZHANG Sheng-wen, WANG Yu′e, ZHANG Qian, QIAO Xiao-ni. Synthesis and Electrochemical Properties of LiNi0.5Mn0.5O2 as Cathode Material for AA Lithium Ion Batteries[J]. Nonferrous Metals Science and Engineering, 2010, 1(02): 11-15. DOI: 10.13264/j.cnki.ysjskx.2010.06.016
  • Cited by

    Periodical cited type(3)

    1. 陈佳兴,苏子龙,赵挺,蒲刚刚,李昂,王略. 高功率型锂离子电池正极材料性能研究. 稀有金属. 2023(12): 1756-1764 .
    2. 胡海燕,武源波,刘益峰,唐瑞仁,吴雄伟,肖遥. 基于铝氧键稳定的隧道型钠离子电池正极材料. 有色金属科学与工程. 2022(02): 59-66 . 本站查看
    3. 刘志亮,李小林,雷超,李栋,王春香,陈敬波,钟盛文. W掺杂改性富锂锰层状正极材料. 有色金属科学与工程. 2020(06): 57-63 . 本站查看

    Other cited types(1)

Catalog

    Article Metrics

    Article views (60) PDF downloads (1) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return