Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
HUANG Jinchao, GUO Ziting, XIAO Qingmei, ZHONG Shengwen. Effect of binary composite conductive agent with graphene and carbon nanotube on performance of LiNi0.5Co0.2Mn0.3O2 lithium-ion battery[J]. Nonferrous Metals Science and Engineering, 2023, 14(3): 355-362. DOI: 10.13264/j.cnki.ysjskx.2023.03.008
Citation: HUANG Jinchao, GUO Ziting, XIAO Qingmei, ZHONG Shengwen. Effect of binary composite conductive agent with graphene and carbon nanotube on performance of LiNi0.5Co0.2Mn0.3O2 lithium-ion battery[J]. Nonferrous Metals Science and Engineering, 2023, 14(3): 355-362. DOI: 10.13264/j.cnki.ysjskx.2023.03.008

Effect of binary composite conductive agent with graphene and carbon nanotube on performance of LiNi0.5Co0.2Mn0.3O2 lithium-ion battery

More Information
  • Received Date: July 16, 2022
  • Revised Date: September 17, 2022
  • Available Online: June 30, 2023
  • In this paper, graphene (Gen), carbon nanotubes (CNTs) and their composite materials graphene/carbon nanotubes (Gen/CNTs) were added to LiNi0.5Co0.2Mn0.3O2 in different contents and proportions to prepare soft pack batteries. The combination between different conductive agents and anode materials and the content ratio of conductive agents on the performance of lithium-ion batteries were studied by XRD, SEM and electrochemical performance tests. Experimental results show that the performance of the battery is closely related to the content of the conductive agent, and the performances of the composite conductive agents are better than those of the single conductive agents. Under the same graphene/carbon nanotube ratio, the internal resistance of the battery is significantly reduced with the increasing amount of conductive agent, and the discharge capacity, rate performance and cycle performance are all improved. When the conductive agent is 1.5% Gen/CNT (3/7, w/w), the discharge specific capacity at 0.2 C can reach 163.2 mAh/g, and the specific discharge capacity can still reach 85.5 mAh/g at 5 C, with the best circulation performance. After 200 cycles at 1 C, the capacity retention rate can reach 103.12%.
  • [1]
    曹青. 全球锂离子电池市场现状及预测[J]. 新材料产业, 2019(9): 2-8. https://www.cnki.com.cn/Article/CJFDTOTAL-XCLY201909003.htm
    [2]
    刘彦龙. 中国锂离子电池产业发展现状及市场发展趋势[J]. 电源技术, 2019, 43(2): 181-187. https://www.cnki.com.cn/Article/CJFDTOTAL-DYJS201902002.htm
    [3]
    SCHIPPER F, ERICKSON E M, ERK C, et al. Review-recent advances and remaining challenges for lithium ion battery cathodes[J]. Journal of the Electrochemical Society, 2017, 164(1): A6220-A6228. doi: 10.1149/2.0351701jes
    [4]
    陈志金, 张一鸣, 田爽, 等. 锂离子电池导电剂的研究进展[J]. 电源技术, 2019, 43(2): 333-337. https://www.cnki.com.cn/Article/CJFDTOTAL-DYJS201902049.htm
    [5]
    李仲明, 李斌, 冯东, 等. 锂离子电池正极材料研究进展[J]. 复合材料学报, 2022, 39(2): 513-527. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE202202008.htm
    [6]
    郭进康, 钟盛文, 徐唱, 等. 长寿命锂离子电池单晶正极材料LiNi1/3Mn1/3Co1/3O2的合成[J]. 电源技术, 2018, 42(9): 1283-1285. doi: 10.3969/j.issn.1002-087X.2018.09.008
    [7]
    曾晓苑, 冯谦, 李雪. 还原-热扩散合金化法制备锂离子电池SnSbFe合金负极材料[J]. 江西冶金, 2020, 40(2): 6-9. https://www.cnki.com.cn/Article/CJFDTOTAL-JXYE202002002.htm
    [8]
    梁亚春. 纳米化锂电池正极材料磷酸铁锂的研究[D]. 成都: 电子科技大学, 2017.
    [9]
    李玉珠, 毛雁芳, 占涛涛, 等. 镁、溴共掺杂对锂离子电池正极材料LiMn2O4电化学性能的影响[J]. 人工晶体学报, 2016, 45(5): 1203-1210. https://www.cnki.com.cn/Article/CJFDTOTAL-RGJT201605011.htm
    [10]
    王琦, 彭大春, 马倩, 等. 炭包覆LiFePO4纳米片的制备及电化学性能研究[J]. 无机材料学报, 2018, 33(12): 1349-1354. https://www.cnki.com.cn/Article/CJFDTOTAL-WGCL201812012.htm
    [11]
    LIU W P, XU H R, QIN H Q, et al. Rapid coating of asphalt to prepare carbon-encapsulated composites of nano-silicon and graphite for lithium battery anodes[J]. Journal of Materials Science, 2020, 55(10): 4382-4394.
    [12]
    LIU W P, XU H R, QIN H Q, et al. The effect of carbon coating on graphite@nano-Si composite as anode materials for Li-ion batteries[J]. Journal of Solid State Electrochemistry, 2019, 23(12): 3363-3372.
    [13]
    闻雷, 宋仁升, 石颖, 等. 炭材料在锂离子电池中的应用及前景[J]. 科学通报, 2013, 58(31): 3157-3171. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201331007.htm
    [14]
    李健, 官亦标, 傅凯, 等. 碳纳米管与石墨烯在储能电池中的应用[J]. 化学进展, 2014, 26(7): 1233-1243. https://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ201407012.htm
    [15]
    祁传磊. 碳纳米管导电浆料的制备及其在锂电池中的应用[D]. 北京: 中国石油大学(北京), 2016.
    [16]
    田丰, 聂薇, 郭乾坤, 等. 碳纳米管导电浆料的制备及其对LiNi0.8Co0.1Mn0.1O2电化学性能的影响[J]. 有色金属科学与工程, 2019, 10(2): 62-67. doi: 10.13264/j.cnki.ysjskx.2019.02.009
    [17]
    NOVOSELOV K S, JIANG Z, ZHANG Y, et al. Room-temperature quantum Hall effect in graphene[J]. Science, 2007, 315(5817): 1379.
    [18]
    黄文进, 王泽杰, 杜婉萍, 等. 原料粒度对固相合成锰酸锂正极电化学性能研究[J]. 江西冶金, 2020, 40(3): 12-17. https://www.cnki.com.cn/Article/CJFDTOTAL-JXYE202003003.htm
    [19]
    曾子元, 王畅, 万伟华, 等. 复合导电剂对锂离子电池性能的影响[J]. 电池, 2020, 50(3): 245-248. https://www.cnki.com.cn/Article/CJFDTOTAL-DACI202003018.htm
    [20]
    何湘柱, 胡燚, 邓忠德, 等. 石墨烯复合导电剂SP/CNTs/G对LiNi0.5Co0.2Mn0.3O2锂离子电池性能影响[J]. 电子元件与材料, 2016, 35(11): 77-82. https://www.cnki.com.cn/Article/CJFDTOTAL-DZAL201611016.htm
  • Related Articles

    [1]GUO Ziting, HUANG Jinchao, XIAO Qingmei, ZHONG Shengwen. Effect of composite conductive agent consisting of graphene and Super-P carbon black on the performance of LiNi0.5Co0.2Mn0.3O2 lithium-ion battery[J]. Nonferrous Metals Science and Engineering, 2023, 14(2): 227-234. DOI: 10.13264/j.cnki.ysjskx.2023.02.009
    [2]ZOU Jin, HU Shun, LONG Qianqian, LI Baobao, ZHONG Shengwen. A multidimensional binary conductive agent on LiNi0.5Co0.2Mn0.3O2 battery performance[J]. Nonferrous Metals Science and Engineering, 2022, 13(3): 63-68. DOI: 10.13264/j.cnki.ysjskx.2022.03.009
    [3]XIA Dingfeng, ZHOU Miaomiao, GUO Qiankun, HU Shun, ZOU Jin, ZHONG Shengwen. Effect of graphene composite conductor on kinetic and electrochemical properties of LiNi0.5Co0.2Mn0.3O2[J]. Nonferrous Metals Science and Engineering, 2022, 13(3): 35-42. DOI: 10.13264/j.cnki.ysjskx.2022.03.005
    [4]XIANG Ziqi, SHEN Huiyuan, HE Yang, SHENG Xiaofei, XIAO Zhu. Research on improving the corrosion resistance of conductive CuSn alloy for socket[J]. Nonferrous Metals Science and Engineering, 2022, 13(1): 76-82. DOI: 10.13264/j.cnki.ysjskx.2022.01.010
    [5]WEN Min, XU Ziqi, ZHANG Ke, LI Xuan, HU Junhui, LUO Hong, YIN Yanhong. Preparation of tungsten oxide/carbon macrofilms composite anode electrode and lithium storage performance[J]. Nonferrous Metals Science and Engineering, 2021, 12(4): 58-65. DOI: 10.13264/j.cnki.ysjskx.2021.04.008
    [6]DU Ruian, MA Xiaoshuai, ZHANG Mengdi, CHEN Fanyun, YU Changlin. Synthesis of multi-walled carbon nanotubes/TiO2 composites and their photocatalytic performance[J]. Nonferrous Metals Science and Engineering, 2019, 10(5): 75-84. DOI: 10.13264/j.cnki.ysjskx.2019.05.012
    [7]TIAN Feng, NIE Wei, GUO Qiankun, WU Lijue, LIANG Weichun, FU Haikuo, ZHONG Shengwen. Preparation of carbon nanotube conductive paste and its effect on electrochemical performance of LiNi0.8Co0.1Mn0.1O2[J]. Nonferrous Metals Science and Engineering, 2019, 10(2): 62-67. DOI: 10.13264/j.cnki.ysjskx.2019.02.009
    [8]YIN Yan-hong, WU Zi-ping, YANG Jian-gao. TunPreparation of high efficient photocatalyst carbon nanotubes/tungsten oxide nanorods assisted by ultrasonic field[J]. Nonferrous Metals Science and Engineering, 2012, 3(5): 39-44. DOI: 10.13264/j.cnki.ysjskx.2012.05.010
    [9]ZHANG Ying-hui, TIAN Hai-xia, ZHU Gen-song, QIN Jing. The density and hardness of W-Cu composite materials affected by nanotubes[J]. Nonferrous Metals Science and Engineering, 2012, 3(3): 33-35. DOI: 10.13264/j.cnki.ysjskx.2012.03.009
    [10]YIN Yan-hong, WU Zi-ping, YANG Jian-gao, LI Ye-sheng, CHEN Yi-sheng, WANG Zhi-xiang. Research on preparation and properties of carbon nanotubes films[J]. Nonferrous Metals Science and Engineering, 2012, 3(3): 27-32. DOI: 10.13264/j.cnki.ysjskx.2012.03.002
  • Cited by

    Periodical cited type(5)

    1. 王中霆,邓容锐,李荣,黄光胜,王敬丰,潘复生. 镁二次电池负极材料的研究综述. 稀有金属. 2024(01): 79-89 .
    2. 孙静,陈硕,吴震,宋占龙,王文龙. 碳质材料在镁基储氢材料中的应用. 稀有金属. 2024(04): 539-551 .
    3. 金庆喜,连紫薇,赵永敏,明安杰,魏峰,毛昌辉. 石墨烯/钽酸锂场效应晶体管温度电阻特性研究. 稀有金属. 2024(07): 1056-1062 .
    4. 姚丽,钟盛文. 废旧锂离子电池正极极粉与铝箔高分离及正极极粉的还原浸出. 有色金属科学与工程. 2024(04): 479-486 . 本站查看
    5. 詹皓博,刘世琦,王勤,曹名磊,马亚楠,张传坤,李建. 锂离子电池磷酸锰铁锂正极材料研究进展. 稀有金属. 2023(12): 1669-1688 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (156) PDF downloads (31) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return