Citation: | HU Haiyan, WU Yuanbo, LIU Yifeng, TANG Ruiren, WU Xiongwei, XIAO Yao. A stable tunnel-type cathode material based on Al-O bonds for sodium-ion batteries[J]. Nonferrous Metals Science and Engineering, 2022, 13(2): 59-66. DOI: 10.13264/j.cnki.ysjskx.2022.02.008 |
[1] |
YABUUCHI N, KUBOTA K, DAHBI M, et al. Research development on sodium-ion batteries[J]. Chemical Reviews, 2014, 114(23): 11636-11682. doi: 10.1021/cr500192f
|
[2] |
高文超, 潘芳芳, 向德波, 等. 锂离子电池正极材料磷酸锰锂研究进展[J]. 电源技术, 2018, 42(3): 445-447. doi: 10.3969/j.issn.1002-087X.2018.03.041
|
[3] |
MA Q, ZENG X X, YUE J, et al. Viscoelastic and nonflammable interface design-enabled dendrite-free and safe solid lithium metal batteries[J]. Advanced Energy Materials, 2019, 9(13): 1803854. doi: 10.1002/aenm.201803854
|
[4] |
DENG Q, HUANG P, ZHOU W X, et al. A high-performance composite electrode for vanadium redox flow batteries[J]. Advanced Energy Materials, 2017, 7(18): 1700461. doi: 10.1002/aenm.201700461
|
[5] |
XIAO Y, WANG P F, YIN Y X, et al. Exposing {010} active facets by multiple-layer oriented stacking nanosheets for high-performance capacitive sodium-ion oxide cathode[J]. Advanced Materials, 2018, 30(40): 1803765. doi: 10.1002/adma.201803765
|
[6] |
DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928-935. doi: 10.1126/science.1212741
|
[7] |
梁叔全, 程一兵, 方国赵, 等. 能源光电转换与大规模储能二次电池关键材料的研究进展[J]. 中国有色金属学报, 2019, 29(9): 2064-2114. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201909013.htm
|
[8] |
KIM S W, SEO D H, MA X, et al. Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries[J]. Advanced Energy Materials, 2012, 2(7): 710-721. doi: 10.1002/aenm.201200026
|
[9] |
PAN H, HU Y S, CHEN L. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage[J]. Energy & Environmental Science, 2013, 6(8): 2338-2360.
|
[10] |
胡伟, 钟盛文, 李晓艳, 等. LiNi0.55Co0.15Mn0.30O2三元正极材料的合成及电化学性能研究[J]. 有色金属科学与工程, 2019, 10(3): 54-57. doi: 10.13264/j.cnki.ysjskx.2019.03.009
|
[11] |
钟采妮, 陈哲钦, 卢彦华, 等. 锂离子电池用CuFe2O4立方颗粒负极材料的合成及其电化学性能[J]. 有色金属科学与工程, 2020, 11(3): 59-64. doi: 10.13264/j.cnki.ysjskx.2020.03.008
|
[12] |
LING W, FU N, YUE J, et al. A flexible solid electrolyte with multilayer structure for sodium metal batteries[J]. Advanced Energy Materials, 2020, 10(9): 1903966. doi: 10.1002/aenm.201903966
|
[13] |
XIAO Y, ZHANG X D, ZHU Y F, et al. Suppressing manganese dissolution via exposing stable {111} facets for high-performance lithium-ion oxide cathode[J]. Advanced Science, 2019, 6(13): 1801908.
|
[14] |
SLATER M D, KIM D, LEE E, et al. Sodium-ion batteries[J]. Advanced Functional Materials, 2013, 23(8): 947-958. doi: 10.1002/adfm.201200691
|
[15] |
YU K, ZHAO H, WANG X, et al. Hyperaccumulation route to Ca-rich hard carbon materials with cation self-incorporation and interlayer spacing optimization for high-performance sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(9): 10544-10553.
|
[16] |
CHEN C, HUANG Y, MENG Z, et al. Multi-heteroatom doped Porous carbon derived from insect feces for capacitance-enhanced sodium-ion storage[J]. Journal of Energy Chemistry, 2021, 54: 482-492. doi: 10.1016/j.jechem.2020.06.025
|
[17] |
LU H, AI F, JIA Y, et al. Exploring sodium-ion storage mechanism in hard carbons with different microstructure prepared by ball-milling method[J]. Small, 2018, 14(39): 1802694. doi: 10.1002/smll.201802694
|
[18] |
田丰, 聂薇, 郭乾坤, 等. 碳纳米管导电浆料的制备及其对LiNi0.8Co0.1Mn0.1O2电化学性能的影响[J]. 有色金属科学与工程, 2019, 10(2): 62-67. doi: 10.13264/j.cnki.ysjskx.2019.02.009
|
[19] |
XIAO Y, ZHU Y F, XIANG W, et al. Deciphering an abnormal layered-tunnel heterostructure induced by chemical substitution for the sodium oxide cathode[J]. Angewandte Chemie-International Edition, 2020, 59(4): 1491-1495. doi: 10.1002/anie.201912101
|
[20] |
ZHAO G, YU D, ZHANG H, et al. Sulphur-doped carbon nanosheets derived from biomass as high-performance anode materials for sodium-ion batteries[J]. Nano Energy, 2020, 67: 104219. doi: 10.1016/j.nanoen.2019.104219
|
[21] |
黄庆研, 梁雅莉, 王俊荣, 等. 烧成温度对溶胶凝胶法合成LiNi0.8Co0.1Mn0.1O2材料性能的影响[J]. 有色金属科学与工程, 2020, 11(6): 64-70. doi: 10.13264/j.cnki.ysjskx.2020.06.009
|
[22] |
GUO R, LV C, XU W, et al. Effect of intrinsic defects of carbon materials on the sodium storage performance[J]. Advanced Energy Materials, 2020, 10(9): 1903652. doi: 10.1002/aenm.201903652
|
[23] |
XIAO Y, ZHU Y F, YAO H R, et al. A stable layered oxide cathode material for high-performance sodium-ion battery[J]. Advanced Energy Materials, 2019, 9(19): 1803978. doi: 10.1002/aenm.201803978
|
[24] |
兰超波, 张骞, 邱世涛, 等. LiNi0.5Co0.2Mn0.3O2正极材料的高电压研究[J]. 有色金属科学与工程, 2019, 10(4): 72-77. doi: 10.13264/j.cnki.ysjskx.2019.04.012
|
[25] |
MASQUELIER C, CROGUENNEC L. Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries[J]. Chemical Reviews, 2013, 113(8): 6552-6591. doi: 10.1021/cr3001862
|
[26] |
NAI J, LOU X W. Hollow structures based on prussian blue and its analogs for electrochemical energy storage and conversion[J]. Advanced Materials, 2019, 31(38): 1706825. doi: 10.1002/adma.201706825
|
[27] |
周苗苗, 李婷婷, 黄吉丽, 等. P2型锰基钠离子正极材料的制备与改性[J]. 有色金属科学与工程, 2019, 10(5): 61-66. doi: 10.13264/j.cnki.ysjskx.2019.05.010
|
[28] |
CHOI J U, JO J H, PARK Y J, et al. Mn-rich P'2-Na0.67Ni0.1Fe0.1Mn0.8O2 as high-energy-density and long-life cathode material for sodium-ion batteries[J]. Advanced Energy Materials, 2020, 10(27): 2001346. doi: 10.1002/aenm.202001346
|
[29] |
VERGNET J, SAUBANERE M, DOUBLET M L, et al. The structural stability of P2-layered Na-based electrodes during anionic redox[J]. Joule, 2020, 4(2): 420-434. doi: 10.1016/j.joule.2019.12.003
|
[30] |
李婷婷, 钟盛文, 周苗苗, 等. P2型层状钠离子电池正极材料的研究[J]. 有色金属科学与工程, 2020, 11(2): 82-88. doi: 10.13264/j.cnki.ysjskx.2020.02.012
|
[31] |
XIAO Y, WANG T, ZHU Y F, et al. Large-scale synthesis of the stable Co-free layered oxide cathode by the synergetic contribution of multielement chemical substitution for practical sodium-ion battery[J]. Research, 2020, 2020: 1469301.
|
[32] |
方永进, 陈重学, 艾新平, 等. 钠离子电池正极材料研究进展[J]. 物理化学学报, 2017, 33(1): 211-241. https://www.cnki.com.cn/Article/CJFDTOTAL-WLHX201701021.htm
|
[33] |
XIAO Y, ABBASI N M, ZHU Y F, et al. Layered oxide cathodes promoted by structure modulation technology for sodium-ion batteries[J]. Advanced Functional Materials, 2020, 30(30): 2001334. doi: 10.1002/adfm.202001334
|
[34] |
WANG P F, XIAO Y, PIAO N, et al. Both cationic and anionic redox chemistry in a P2-type sodium layered oxide[J]. Nano Energy, 2020, 69: 104474. doi: 10.1016/j.nanoen.2020.104474
|
[35] |
WANG H, SUN F, QU Z, et al. Oxygen functional group modification of cellulose-derived hard carbon for enhanced sodium ion storage[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(22): 18554-18565.
|
[36] |
HU H Y, XIAO Y, LING W, et al. A stable biomass-derived hard carbon anode for high-performance sodium-ion full battery[J]. Energy Technology, 2021, 9(1): 2000730. doi: 10.1002/ente.202000730
|
[37] |
KOMABA S, MURATA W, ISHIKAWA T, et al. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries[J]. Advanced Functional Materials, 2011, 21(20): 3859-3867. doi: 10.1002/adfm.201100854
|
[38] |
XIA J L, YAN D, GUO L P, et al. Hard carbon nanosheets with uniform ultramicropores and accessible functional groups showing high realistic capacity and superior rate performance for sodium-ion storage[J]. Advanced Materials, 2020, 32(21): 2000447. doi: 10.1002/adma.202000447
|
[39] |
DAVID L, BHANDAVAT R, SINGH G. MoS2/graphene composite paper for sodium-ion battery electrodes[J]. ACS Nano, 2014, 8(2): 1759-1770. doi: 10.1021/nn406156b
|
[40] |
SUN J, LEE H W, PASTA M, et al. A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries[J]. Nature Nanotechnology, 2015, 10(11): 980. doi: 10.1038/nnano.2015.194
|
[41] |
ZHAO A L, FANG Y J, AI X P, et al. Mixed polyanion cathode materials: Toward stable and high-energy sodium-ion batteries[J]. Journal of Energy Chemistry, 2021, 60: 635-648. doi: 10.1016/j.jechem.2021.01.014
|
[42] |
DING G C, ZHU L M, YANG Q, et al. NaV3O8/poly(3, 4-ethylenedioxythiophene) composites as high-rate and long-lifespan cathode materials for reversible sodium storage[J]. Rare Metals, 2020, 39(8): 865-873. doi: 10.1007/s12598-020-01452-y
|
[43] |
WANG Q, CHU S Y, GUO S H. Progress on multiphase layered transition metal oxide cathodes of sodium ion batteries[J]. Chinese Chemical Letters, 2020, 31(9): 2167-2176. doi: 10.1016/j.cclet.2019.12.008
|
[44] |
XIAO Y, ZHU Y F, LI L, et al. Structural insights into the dynamic and controlled multiphase evolution of layered-spinel heterostructured sodium oxide cathode[J]. Cell Reports Physical Science, 2021(2): 100547.
|
[45] |
XIAO Y, WANG P F, YIN Y X, et al. A layered-tunnel intergrowth structure for high-performance sodium-ion oxide cathode[J]. Advanced Energy Materials, 2018, 8(22): 1800492. doi: 10.1002/aenm.201800492
|
[46] |
ZHU Y F, XIAO Y, HUA W B, et al. Manipulating layered P2@P3 integrated spinel structure evolution for high-performance sodium-ion batteries[J]. Angewandte Chemie-International Edition, 2020, 132(24): 9385-9390.
|
[47] |
WANG Y, LIU J, LEE B, et al. Ti-substituted tunnel-type Na0.44MnO2 oxide as a negative electrode for aqueous sodium-ion batteries[J]. Nature Communications, 2015(6): 6401. doi: 10.1038/ncomms7401
|
[48] |
WANG Y, MU L, LIU J, et al. A novel high capacity positive electrode material with tunnel- type structure for aqueous sodium-ion batteries[J]. Advanced Energy Materials, 2015, 5(22): 1501005. doi: 10.1002/aenm.201501005
|
[49] |
SHI W J, ZHENG Y M, MENG X M, et al. Designing sodium manganese oxide with 4d-cation Zr doping as a high-rate-performance cathode for sodium-ion batteries[J]. Chemelectrochem, 2020, 7(12): 2545-2552. doi: 10.1002/celc.202000205
|
[50] |
CHAE M S, CHAKRABORTY A, KUNNIKURUVAN S, et al. Vacancy-driven high rate capabilities in calcium-doped Na0.4MnO2 cathodes for aqueous sodium-ion batteries[J]. Advanced Energy Materials, 2020, 10(37): 2002077. doi: 10.1002/aenm.202002077
|
[51] |
ZHONG W, HUANG Q, ZHENG F, et al. Structural insight into the abnormal capacity of a co-substituted tunnel-type Na0.44MnO2 cathode for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(42): 47548-47555.
|
[52] |
LI X L, BAO J, LI Y F, et al. Boosting reversibility of Mn-based tunnel-structured cathode materials for sodium-ion batteries by magnesium substitution[J]. Advanced Science, 2021, 8(9): 2004448. doi: 10.1002/advs.202004448
|
[53] |
GUO D L, LI B, CHANG Z R, et al. Facile synthesis of LiAl0.1Mn1.9O4 as cathode material for lithium ion batteries: towards rate and cycling capabilities at an elevated temperature[J]. Electrochimica Acta, 2014, 134: 338-346. doi: 10.1016/j.electacta.2014.04.117
|
[54] |
刘丽露, 戚兴国, 胡勇胜, 等. 钠离子电池新型Cu基隧道型氧化物正极材料研究[J]. 化学学报, 2017, 75(2): 218-224. https://www.cnki.com.cn/Article/CJFDTOTAL-HXXB201702011.htm
|
[55] |
FU B, SU Y, YU J, et al. Single crystalline nanorods of Na0.44MnO2 enhanced by reduced graphene oxides as a high rate and high capacity cathode material for sodium-ion batteries[J]. Electrochimica Acta, 2019, 303: 125-132. doi: 10.1016/j.electacta.2019.02.074
|
[56] |
FAN T E, LIU S M, TANG X, et al. Rational construction of Na0.44MnO2 nanorods and PAN nanofibers composite as high areal capacity sodium-ion batteries[J]. Ionics, 2021, 27(3): 1137-1142. doi: 10.1007/s11581-021-03910-8
|
[57] |
SHINDE G S, NAYAK P D, VANAM S P, et al. Ultrasonic sonochemical synthesis of Na0.44MnO2 insertion material for sodium-ion batteries[J]. Journal of Power Sources, 2019, 416: 50-55. doi: 10.1016/j.jpowsour.2019.01.061
|
[58] |
AUGUSTYN V, COME J, LOWE M A, et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance[J]. Nature Materials, 2013, 12(6): 518-522. doi: 10.1038/nmat3601
|
[59] |
AUGUSTYN V, SIMON P, DUNN B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage[J]. Energy & Environmental Science, 2014, 7(5): 1597-1614.
|
[60] |
GYABENG D, ANANG D A, HAN J I. Honeycomb layered oxide Na3Ni2SbO6 for high performance pseudocapacitor[J]. Journal of Alloys and Compounds, 2017, 704(2017): 734-741.
|
[61] |
VALVO M, DOUBAJI S, SAADOUNE I, et al. Pseudocapacitive charge storage properties of Na2/3Co2/3Mn2/9Ni1/9O2 in Na-ion batteries[J]. Electrochimica Acta, 2018, 276: 142-152. doi: 10.1016/j.electacta.2018.04.150
|
[1] | LIU Zhijun, PENG Wanwan, LI Zhifeng, WANG Chunxiang, ZHANG Qian, ZHONG Shengwen. Effect of niobium doping on the electrochemical performance of nickel-based cathode materials[J]. Nonferrous Metals Science and Engineering, 2020, 11(2): 89-96. DOI: 10.13264/j.cnki.ysjskx.2020.02.013 |
[2] | ZHOU Miaomiao, LI Tingting, HUANG Jili, GUO Qiankun, ZHONG Shengwen. Study on preparation and modification of P2-type manganic sodium ion anode battery[J]. Nonferrous Metals Science and Engineering, 2019, 10(5): 61-66. DOI: 10.13264/j.cnki.ysjskx.2019.05.010 |
[3] | XU Yangming, CUI Qiang, WANG Yaqin, SHI Kexin, TONG jinlin, WANG Bin. Composition optimization and electrochemical properties of Mg-Al-Pb-Ga-Y alloys as anodes for seawater activated battery[J]. Nonferrous Metals Science and Engineering, 2019, 10(4): 51-58. DOI: 10.13264/j.cnki.ysjskx.2019.04.009 |
[4] | HU Wei, ZHONG Shengwen, LI Xiaoyan, HUANG Jingbiao, PENG Kangchun, RAO Xianfa, QIU Shitao. The study of synthetize and electrochemical properties in LiNi0.55Co0.15Mn0.30O2 cathode material[J]. Nonferrous Metals Science and Engineering, 2019, 10(3): 54-57. DOI: 10.13264/j.cnki.ysjskx.2019.03.009 |
[5] | QIU Shitao, ZHONG Shengwen, LI Tingting, YANG Jinmeng, TIAN Feng. Study on the electrochemical performance of Cu-added LiNi0.6Co0.2Mn0.2O2[J]. Nonferrous Metals Science and Engineering, 2018, 9(5): 21-25. DOI: 10.13264/j.cnki.ysjskx.2018.05.004 |
[6] | WANG Qiang, ZHONG Shengwen, PENG Wanwan, XU Chang, WANG Chunxiang. Effect of sodium source on electrochemical performance of Na3V2(PO4)3 cathode material[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 84-87, 113. DOI: 10.13264/j.cnki.ysjskx.2017.03.014 |
[7] | CHEN Jun, MEI Wenjie, ZENG Min, GUO Jinkang, LIU Defang, ZHONG Shengwen. Synthesis and performance research of carboxyl substituted nickel phthalocyanine as cathode materials for lithium ion batteries[J]. Nonferrous Metals Science and Engineering, 2015, 6(5): 45-51. DOI: 10.13264/j.cnki.ysjskx.2015.05.009 |
[8] | HU Wei, ZHONG Shengwen, HUANG Bing. Optimizing electrochemical properties in Li-rich Mn-based cathode material[J]. Nonferrous Metals Science and Engineering, 2014, 5(4): 32-36. DOI: 10.13264/j.cnki.ysjskx.2014.04.007 |
[9] | WANG Ri-chu, WANG Nai-guang, PENG Chao-qun, ZENG Su-ming. Effect of manganese on electrochemical performance of magnesium alloy anode AP65 used in seawater activated battery[J]. Nonferrous Metals Science and Engineering, 2013, 4(3): 1-8, 48. DOI: 10.13264/j.cnki.ysjskx.2013.03.009 |
[10] | ZHANG Sheng-wen, WANG Yu′e, ZHANG Qian, QIAO Xiao-ni. Synthesis and Electrochemical Properties of LiNi0.5Mn0.5O2 as Cathode Material for AA Lithium Ion Batteries[J]. Nonferrous Metals Science and Engineering, 2010, 1(02): 11-15. DOI: 10.13264/j.cnki.ysjskx.2010.06.016 |