Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
HU Haiyan, WU Yuanbo, LIU Yifeng, TANG Ruiren, WU Xiongwei, XIAO Yao. A stable tunnel-type cathode material based on Al-O bonds for sodium-ion batteries[J]. Nonferrous Metals Science and Engineering, 2022, 13(2): 59-66. DOI: 10.13264/j.cnki.ysjskx.2022.02.008
Citation: HU Haiyan, WU Yuanbo, LIU Yifeng, TANG Ruiren, WU Xiongwei, XIAO Yao. A stable tunnel-type cathode material based on Al-O bonds for sodium-ion batteries[J]. Nonferrous Metals Science and Engineering, 2022, 13(2): 59-66. DOI: 10.13264/j.cnki.ysjskx.2022.02.008

A stable tunnel-type cathode material based on Al-O bonds for sodium-ion batteries

More Information
  • Received Date: June 15, 2021
  • Revised Date: September 19, 2021
  • Available Online: May 09, 2022
  • Na0.44MnO2, a tunnel-type cathode material for sodium-ion batteries, has attracted attention because of its low cost and abundant raw materials. However, the cathode material has the problems of structural instability of manganese ion dissolution and migration caused by the Jahn-Teller effect during Na+ extraction and insertion. The bonding energy of the Al-O bond formed by Al substituted for Mn was higher than that of the Mn-O bond, which could alleviate the problems of lattice strain as well as the dissolution and migration of Mn ions during the cycle. Therefore, Na0.44Mn0.95Al0.05O2 was prepared by a high-temperature solid-state method. The structure and surface morphology of the prepared cathode material were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The electrochemical performance and kinetic properties of the cathode material were investigated. The cathode displayed a smooth charge-discharge curve with a highly reversible capacity of 127.8 mAh/g. Na+ storage was mainly governed by a capacitive mechanism.
  • [1]
    YABUUCHI N, KUBOTA K, DAHBI M, et al. Research development on sodium-ion batteries[J]. Chemical Reviews, 2014, 114(23): 11636-11682. doi: 10.1021/cr500192f
    [2]
    高文超, 潘芳芳, 向德波, 等. 锂离子电池正极材料磷酸锰锂研究进展[J]. 电源技术, 2018, 42(3): 445-447. doi: 10.3969/j.issn.1002-087X.2018.03.041
    [3]
    MA Q, ZENG X X, YUE J, et al. Viscoelastic and nonflammable interface design-enabled dendrite-free and safe solid lithium metal batteries[J]. Advanced Energy Materials, 2019, 9(13): 1803854. doi: 10.1002/aenm.201803854
    [4]
    DENG Q, HUANG P, ZHOU W X, et al. A high-performance composite electrode for vanadium redox flow batteries[J]. Advanced Energy Materials, 2017, 7(18): 1700461. doi: 10.1002/aenm.201700461
    [5]
    XIAO Y, WANG P F, YIN Y X, et al. Exposing {010} active facets by multiple-layer oriented stacking nanosheets for high-performance capacitive sodium-ion oxide cathode[J]. Advanced Materials, 2018, 30(40): 1803765. doi: 10.1002/adma.201803765
    [6]
    DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928-935. doi: 10.1126/science.1212741
    [7]
    梁叔全, 程一兵, 方国赵, 等. 能源光电转换与大规模储能二次电池关键材料的研究进展[J]. 中国有色金属学报, 2019, 29(9): 2064-2114. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201909013.htm
    [8]
    KIM S W, SEO D H, MA X, et al. Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries[J]. Advanced Energy Materials, 2012, 2(7): 710-721. doi: 10.1002/aenm.201200026
    [9]
    PAN H, HU Y S, CHEN L. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage[J]. Energy & Environmental Science, 2013, 6(8): 2338-2360.
    [10]
    胡伟, 钟盛文, 李晓艳, 等. LiNi0.55Co0.15Mn0.30O2三元正极材料的合成及电化学性能研究[J]. 有色金属科学与工程, 2019, 10(3): 54-57. doi: 10.13264/j.cnki.ysjskx.2019.03.009
    [11]
    钟采妮, 陈哲钦, 卢彦华, 等. 锂离子电池用CuFe2O4立方颗粒负极材料的合成及其电化学性能[J]. 有色金属科学与工程, 2020, 11(3): 59-64. doi: 10.13264/j.cnki.ysjskx.2020.03.008
    [12]
    LING W, FU N, YUE J, et al. A flexible solid electrolyte with multilayer structure for sodium metal batteries[J]. Advanced Energy Materials, 2020, 10(9): 1903966. doi: 10.1002/aenm.201903966
    [13]
    XIAO Y, ZHANG X D, ZHU Y F, et al. Suppressing manganese dissolution via exposing stable {111} facets for high-performance lithium-ion oxide cathode[J]. Advanced Science, 2019, 6(13): 1801908.
    [14]
    SLATER M D, KIM D, LEE E, et al. Sodium-ion batteries[J]. Advanced Functional Materials, 2013, 23(8): 947-958. doi: 10.1002/adfm.201200691
    [15]
    YU K, ZHAO H, WANG X, et al. Hyperaccumulation route to Ca-rich hard carbon materials with cation self-incorporation and interlayer spacing optimization for high-performance sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(9): 10544-10553.
    [16]
    CHEN C, HUANG Y, MENG Z, et al. Multi-heteroatom doped Porous carbon derived from insect feces for capacitance-enhanced sodium-ion storage[J]. Journal of Energy Chemistry, 2021, 54: 482-492. doi: 10.1016/j.jechem.2020.06.025
    [17]
    LU H, AI F, JIA Y, et al. Exploring sodium-ion storage mechanism in hard carbons with different microstructure prepared by ball-milling method[J]. Small, 2018, 14(39): 1802694. doi: 10.1002/smll.201802694
    [18]
    田丰, 聂薇, 郭乾坤, 等. 碳纳米管导电浆料的制备及其对LiNi0.8Co0.1Mn0.1O2电化学性能的影响[J]. 有色金属科学与工程, 2019, 10(2): 62-67. doi: 10.13264/j.cnki.ysjskx.2019.02.009
    [19]
    XIAO Y, ZHU Y F, XIANG W, et al. Deciphering an abnormal layered-tunnel heterostructure induced by chemical substitution for the sodium oxide cathode[J]. Angewandte Chemie-International Edition, 2020, 59(4): 1491-1495. doi: 10.1002/anie.201912101
    [20]
    ZHAO G, YU D, ZHANG H, et al. Sulphur-doped carbon nanosheets derived from biomass as high-performance anode materials for sodium-ion batteries[J]. Nano Energy, 2020, 67: 104219. doi: 10.1016/j.nanoen.2019.104219
    [21]
    黄庆研, 梁雅莉, 王俊荣, 等. 烧成温度对溶胶凝胶法合成LiNi0.8Co0.1Mn0.1O2材料性能的影响[J]. 有色金属科学与工程, 2020, 11(6): 64-70. doi: 10.13264/j.cnki.ysjskx.2020.06.009
    [22]
    GUO R, LV C, XU W, et al. Effect of intrinsic defects of carbon materials on the sodium storage performance[J]. Advanced Energy Materials, 2020, 10(9): 1903652. doi: 10.1002/aenm.201903652
    [23]
    XIAO Y, ZHU Y F, YAO H R, et al. A stable layered oxide cathode material for high-performance sodium-ion battery[J]. Advanced Energy Materials, 2019, 9(19): 1803978. doi: 10.1002/aenm.201803978
    [24]
    兰超波, 张骞, 邱世涛, 等. LiNi0.5Co0.2Mn0.3O2正极材料的高电压研究[J]. 有色金属科学与工程, 2019, 10(4): 72-77. doi: 10.13264/j.cnki.ysjskx.2019.04.012
    [25]
    MASQUELIER C, CROGUENNEC L. Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries[J]. Chemical Reviews, 2013, 113(8): 6552-6591. doi: 10.1021/cr3001862
    [26]
    NAI J, LOU X W. Hollow structures based on prussian blue and its analogs for electrochemical energy storage and conversion[J]. Advanced Materials, 2019, 31(38): 1706825. doi: 10.1002/adma.201706825
    [27]
    周苗苗, 李婷婷, 黄吉丽, 等. P2型锰基钠离子正极材料的制备与改性[J]. 有色金属科学与工程, 2019, 10(5): 61-66. doi: 10.13264/j.cnki.ysjskx.2019.05.010
    [28]
    CHOI J U, JO J H, PARK Y J, et al. Mn-rich P'2-Na0.67Ni0.1Fe0.1Mn0.8O2 as high-energy-density and long-life cathode material for sodium-ion batteries[J]. Advanced Energy Materials, 2020, 10(27): 2001346. doi: 10.1002/aenm.202001346
    [29]
    VERGNET J, SAUBANERE M, DOUBLET M L, et al. The structural stability of P2-layered Na-based electrodes during anionic redox[J]. Joule, 2020, 4(2): 420-434. doi: 10.1016/j.joule.2019.12.003
    [30]
    李婷婷, 钟盛文, 周苗苗, 等. P2型层状钠离子电池正极材料的研究[J]. 有色金属科学与工程, 2020, 11(2): 82-88. doi: 10.13264/j.cnki.ysjskx.2020.02.012
    [31]
    XIAO Y, WANG T, ZHU Y F, et al. Large-scale synthesis of the stable Co-free layered oxide cathode by the synergetic contribution of multielement chemical substitution for practical sodium-ion battery[J]. Research, 2020, 2020: 1469301.
    [32]
    方永进, 陈重学, 艾新平, 等. 钠离子电池正极材料研究进展[J]. 物理化学学报, 2017, 33(1): 211-241. https://www.cnki.com.cn/Article/CJFDTOTAL-WLHX201701021.htm
    [33]
    XIAO Y, ABBASI N M, ZHU Y F, et al. Layered oxide cathodes promoted by structure modulation technology for sodium-ion batteries[J]. Advanced Functional Materials, 2020, 30(30): 2001334. doi: 10.1002/adfm.202001334
    [34]
    WANG P F, XIAO Y, PIAO N, et al. Both cationic and anionic redox chemistry in a P2-type sodium layered oxide[J]. Nano Energy, 2020, 69: 104474. doi: 10.1016/j.nanoen.2020.104474
    [35]
    WANG H, SUN F, QU Z, et al. Oxygen functional group modification of cellulose-derived hard carbon for enhanced sodium ion storage[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(22): 18554-18565.
    [36]
    HU H Y, XIAO Y, LING W, et al. A stable biomass-derived hard carbon anode for high-performance sodium-ion full battery[J]. Energy Technology, 2021, 9(1): 2000730. doi: 10.1002/ente.202000730
    [37]
    KOMABA S, MURATA W, ISHIKAWA T, et al. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries[J]. Advanced Functional Materials, 2011, 21(20): 3859-3867. doi: 10.1002/adfm.201100854
    [38]
    XIA J L, YAN D, GUO L P, et al. Hard carbon nanosheets with uniform ultramicropores and accessible functional groups showing high realistic capacity and superior rate performance for sodium-ion storage[J]. Advanced Materials, 2020, 32(21): 2000447. doi: 10.1002/adma.202000447
    [39]
    DAVID L, BHANDAVAT R, SINGH G. MoS2/graphene composite paper for sodium-ion battery electrodes[J]. ACS Nano, 2014, 8(2): 1759-1770. doi: 10.1021/nn406156b
    [40]
    SUN J, LEE H W, PASTA M, et al. A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries[J]. Nature Nanotechnology, 2015, 10(11): 980. doi: 10.1038/nnano.2015.194
    [41]
    ZHAO A L, FANG Y J, AI X P, et al. Mixed polyanion cathode materials: Toward stable and high-energy sodium-ion batteries[J]. Journal of Energy Chemistry, 2021, 60: 635-648. doi: 10.1016/j.jechem.2021.01.014
    [42]
    DING G C, ZHU L M, YANG Q, et al. NaV3O8/poly(3, 4-ethylenedioxythiophene) composites as high-rate and long-lifespan cathode materials for reversible sodium storage[J]. Rare Metals, 2020, 39(8): 865-873. doi: 10.1007/s12598-020-01452-y
    [43]
    WANG Q, CHU S Y, GUO S H. Progress on multiphase layered transition metal oxide cathodes of sodium ion batteries[J]. Chinese Chemical Letters, 2020, 31(9): 2167-2176. doi: 10.1016/j.cclet.2019.12.008
    [44]
    XIAO Y, ZHU Y F, LI L, et al. Structural insights into the dynamic and controlled multiphase evolution of layered-spinel heterostructured sodium oxide cathode[J]. Cell Reports Physical Science, 2021(2): 100547.
    [45]
    XIAO Y, WANG P F, YIN Y X, et al. A layered-tunnel intergrowth structure for high-performance sodium-ion oxide cathode[J]. Advanced Energy Materials, 2018, 8(22): 1800492. doi: 10.1002/aenm.201800492
    [46]
    ZHU Y F, XIAO Y, HUA W B, et al. Manipulating layered P2@P3 integrated spinel structure evolution for high-performance sodium-ion batteries[J]. Angewandte Chemie-International Edition, 2020, 132(24): 9385-9390.
    [47]
    WANG Y, LIU J, LEE B, et al. Ti-substituted tunnel-type Na0.44MnO2 oxide as a negative electrode for aqueous sodium-ion batteries[J]. Nature Communications, 2015(6): 6401. doi: 10.1038/ncomms7401
    [48]
    WANG Y, MU L, LIU J, et al. A novel high capacity positive electrode material with tunnel- type structure for aqueous sodium-ion batteries[J]. Advanced Energy Materials, 2015, 5(22): 1501005. doi: 10.1002/aenm.201501005
    [49]
    SHI W J, ZHENG Y M, MENG X M, et al. Designing sodium manganese oxide with 4d-cation Zr doping as a high-rate-performance cathode for sodium-ion batteries[J]. Chemelectrochem, 2020, 7(12): 2545-2552. doi: 10.1002/celc.202000205
    [50]
    CHAE M S, CHAKRABORTY A, KUNNIKURUVAN S, et al. Vacancy-driven high rate capabilities in calcium-doped Na0.4MnO2 cathodes for aqueous sodium-ion batteries[J]. Advanced Energy Materials, 2020, 10(37): 2002077. doi: 10.1002/aenm.202002077
    [51]
    ZHONG W, HUANG Q, ZHENG F, et al. Structural insight into the abnormal capacity of a co-substituted tunnel-type Na0.44MnO2 cathode for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(42): 47548-47555.
    [52]
    LI X L, BAO J, LI Y F, et al. Boosting reversibility of Mn-based tunnel-structured cathode materials for sodium-ion batteries by magnesium substitution[J]. Advanced Science, 2021, 8(9): 2004448. doi: 10.1002/advs.202004448
    [53]
    GUO D L, LI B, CHANG Z R, et al. Facile synthesis of LiAl0.1Mn1.9O4 as cathode material for lithium ion batteries: towards rate and cycling capabilities at an elevated temperature[J]. Electrochimica Acta, 2014, 134: 338-346. doi: 10.1016/j.electacta.2014.04.117
    [54]
    刘丽露, 戚兴国, 胡勇胜, 等. 钠离子电池新型Cu基隧道型氧化物正极材料研究[J]. 化学学报, 2017, 75(2): 218-224. https://www.cnki.com.cn/Article/CJFDTOTAL-HXXB201702011.htm
    [55]
    FU B, SU Y, YU J, et al. Single crystalline nanorods of Na0.44MnO2 enhanced by reduced graphene oxides as a high rate and high capacity cathode material for sodium-ion batteries[J]. Electrochimica Acta, 2019, 303: 125-132. doi: 10.1016/j.electacta.2019.02.074
    [56]
    FAN T E, LIU S M, TANG X, et al. Rational construction of Na0.44MnO2 nanorods and PAN nanofibers composite as high areal capacity sodium-ion batteries[J]. Ionics, 2021, 27(3): 1137-1142. doi: 10.1007/s11581-021-03910-8
    [57]
    SHINDE G S, NAYAK P D, VANAM S P, et al. Ultrasonic sonochemical synthesis of Na0.44MnO2 insertion material for sodium-ion batteries[J]. Journal of Power Sources, 2019, 416: 50-55. doi: 10.1016/j.jpowsour.2019.01.061
    [58]
    AUGUSTYN V, COME J, LOWE M A, et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance[J]. Nature Materials, 2013, 12(6): 518-522. doi: 10.1038/nmat3601
    [59]
    AUGUSTYN V, SIMON P, DUNN B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage[J]. Energy & Environmental Science, 2014, 7(5): 1597-1614.
    [60]
    GYABENG D, ANANG D A, HAN J I. Honeycomb layered oxide Na3Ni2SbO6 for high performance pseudocapacitor[J]. Journal of Alloys and Compounds, 2017, 704(2017): 734-741.
    [61]
    VALVO M, DOUBAJI S, SAADOUNE I, et al. Pseudocapacitive charge storage properties of Na2/3Co2/3Mn2/9Ni1/9O2 in Na-ion batteries[J]. Electrochimica Acta, 2018, 276: 142-152. doi: 10.1016/j.electacta.2018.04.150
  • Related Articles

    [1]LIU Zhijun, PENG Wanwan, LI Zhifeng, WANG Chunxiang, ZHANG Qian, ZHONG Shengwen. Effect of niobium doping on the electrochemical performance of nickel-based cathode materials[J]. Nonferrous Metals Science and Engineering, 2020, 11(2): 89-96. DOI: 10.13264/j.cnki.ysjskx.2020.02.013
    [2]ZHOU Miaomiao, LI Tingting, HUANG Jili, GUO Qiankun, ZHONG Shengwen. Study on preparation and modification of P2-type manganic sodium ion anode battery[J]. Nonferrous Metals Science and Engineering, 2019, 10(5): 61-66. DOI: 10.13264/j.cnki.ysjskx.2019.05.010
    [3]XU Yangming, CUI Qiang, WANG Yaqin, SHI Kexin, TONG jinlin, WANG Bin. Composition optimization and electrochemical properties of Mg-Al-Pb-Ga-Y alloys as anodes for seawater activated battery[J]. Nonferrous Metals Science and Engineering, 2019, 10(4): 51-58. DOI: 10.13264/j.cnki.ysjskx.2019.04.009
    [4]HU Wei, ZHONG Shengwen, LI Xiaoyan, HUANG Jingbiao, PENG Kangchun, RAO Xianfa, QIU Shitao. The study of synthetize and electrochemical properties in LiNi0.55Co0.15Mn0.30O2 cathode material[J]. Nonferrous Metals Science and Engineering, 2019, 10(3): 54-57. DOI: 10.13264/j.cnki.ysjskx.2019.03.009
    [5]QIU Shitao, ZHONG Shengwen, LI Tingting, YANG Jinmeng, TIAN Feng. Study on the electrochemical performance of Cu-added LiNi0.6Co0.2Mn0.2O2[J]. Nonferrous Metals Science and Engineering, 2018, 9(5): 21-25. DOI: 10.13264/j.cnki.ysjskx.2018.05.004
    [6]WANG Qiang, ZHONG Shengwen, PENG Wanwan, XU Chang, WANG Chunxiang. Effect of sodium source on electrochemical performance of Na3V2(PO4)3 cathode material[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 84-87, 113. DOI: 10.13264/j.cnki.ysjskx.2017.03.014
    [7]CHEN Jun, MEI Wenjie, ZENG Min, GUO Jinkang, LIU Defang, ZHONG Shengwen. Synthesis and performance research of carboxyl substituted nickel phthalocyanine as cathode materials for lithium ion batteries[J]. Nonferrous Metals Science and Engineering, 2015, 6(5): 45-51. DOI: 10.13264/j.cnki.ysjskx.2015.05.009
    [8]HU Wei, ZHONG Shengwen, HUANG Bing. Optimizing electrochemical properties in Li-rich Mn-based cathode material[J]. Nonferrous Metals Science and Engineering, 2014, 5(4): 32-36. DOI: 10.13264/j.cnki.ysjskx.2014.04.007
    [9]WANG Ri-chu, WANG Nai-guang, PENG Chao-qun, ZENG Su-ming. Effect of manganese on electrochemical performance of magnesium alloy anode AP65 used in seawater activated battery[J]. Nonferrous Metals Science and Engineering, 2013, 4(3): 1-8, 48. DOI: 10.13264/j.cnki.ysjskx.2013.03.009
    [10]ZHANG Sheng-wen, WANG Yu′e, ZHANG Qian, QIAO Xiao-ni. Synthesis and Electrochemical Properties of LiNi0.5Mn0.5O2 as Cathode Material for AA Lithium Ion Batteries[J]. Nonferrous Metals Science and Engineering, 2010, 1(02): 11-15. DOI: 10.13264/j.cnki.ysjskx.2010.06.016

Catalog

    Article Metrics

    Article views (148) PDF downloads (13) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return