Citation: | ZHANG Mengdi, CHEN Fanyun, MA Xiaoshuai, YANG Kai, YU Changlin. Preparation and application of nano-micro Ag2CO3 photocatalytic materials[J]. Nonferrous Metals Science and Engineering, 2019, 10(2): 52-61. DOI: 10.13264/j.cnki.ysjskx.2019.02.008 |
[1] |
GUO S H, BAO J X, HU T, et al. Controllable synthesis porous Ag2CO3 nanorods for efficient photocatalysis[J]. Nanoscale Research Letters, 2015, 10(1):193-200. doi: 10.1186/s11671-015-0892-5
|
[2] |
曹文杰, 徐俊晖, 王亚珍.石墨烯及其复合材料吸附降解有机污染物的研究进展[J].江汉大学学报(自然科学版), 2017, 45(4):298-306. http://d.old.wanfangdata.com.cn/Periodical/jhdxxb201704002
|
[3] |
LONCAREVIC D, VUKOJE I, DOSTANIC J, et al. Antimicrobial and photocatalytic abilities of Ag2CO3 nano-rods[J]. ChemistrySelect, 2017, 2(10):2931-2938. doi: 10.1002/slct.201700003
|
[4] |
王茀学, 衣晓虹, 王崇臣, 等.一种稳定二维配位聚合物用于光催化还原Cr (Ⅵ)及降解有机污染物[J].催化学报, 2017, 38(12):2141-2149. http://www.cnki.com.cn/Article/CJFDTotal-CHUA201712023.htm
|
[5] |
WOJTYLA S, BARAN T. Insight on doped ZnS and its activity towards photocatalytic removing of Cr(Ⅵ) from wastewater in the presence of organic pollutants[J]. Materials Chemistry & Physics, 2018, 212:103-112. http://www.chemeurope.com/en/publications/1170647/insight-on-doped-zns-and-its-activity-towards-photocatalytic-removing-of-cr-vi-from-wastewater-in-the-presence-of-organic-pollutants.html
|
[6] |
高博, 刘彬, 王新, 等.半导体材料联合超声用于降解有机污染物研究进展[J].生态与农村环境学报, 2018, 34(6):481-488. http://d.old.wanfangdata.com.cn/Periodical/ncsthj201806001
|
[7] |
YU H J, SHI R, ZHAO Y X, et al. Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution[J]. Advanced Materials, 2017, 29(16):1605148-1605154. doi: 10.1002/adma.201605148
|
[8] |
马小帅, 陈范云, 张萌迪, 等. G-C3N4基光催化剂的制备和应用[J].有色金属科学与工程, 2018, 9(3):42-52. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201803008
|
[9] |
薛霜霜, 何洪波, 吴榛, 等.研磨-焙烧法制备BiOI/BiOBr异质结光催化剂及其光催化性能[J].有色金属科学与工程, 2017, 8(1):86-93. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201701015
|
[10] |
FANG X Z, SHANG Q C, WANG Y, et al. Single Pt atoms confined into a metal-organic framework for efficient photocatalysis[J]. Advanced Materials, 2018, 30(7):1705112-170519. doi: 10.1002/adma.201705112
|
[11] |
LI J D, YU C L, FANG W, et al. Preparation, characterization and photocatalytic performance of heterostructured AgCl/Bi2WO6 microspheres[J]. Chinese Journal of Catalysis, 2015, 36(7):987-993. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cuihuaxb201507012
|
[12] |
魏龙福, 余长林, 陈建钗, 等.水热法合成Ag2CO3/ZnO异质结复合光催化剂及其光催化性能[J].有色金属科学与工程, 2014, 5(1):47-53. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201401009
|
[13] |
WANG G Z, YUAN H K, CHANG J L, et al. ZnO/MoX2 (X=S, Se) composites used for visible light photocatalysis[J]. Rsc Advances, 2018, 8(20):10828-10835. doi: 10.1039/C7RA10425A
|
[14] |
LI H, LI J, AI Z H, et al. Oxygen vacancy-mediated photocatalysis of BiOCl: reactivity, selectivity, and perspectives[J]. Angewandte Chemie International Edition, 2018, 57(1):122-138. doi: 10.1002/anie.201705628
|
[15] |
魏龙福, 余长林.石墨烯/半导体复合光催化剂的研究进展[J].有色金属科学与工程, 2013, 4(3):34-39. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201303007
|
[16] |
樊启哲, 钟立钦, 冯庐平, 等.肖特基型光催化剂研究进展[J].材料导报, 2018, 31(9):106-111. http://d.old.wanfangdata.com.cn/Periodical/cldb201709014
|
[17] |
ZENG D B, YANG K, YU C L, et al. Phase transformation and microwave hydrothermal guided a novel double Z-scheme ternary vanadate heterojunction with highly efficient photocatalytic performance[J]. Applied Catalysis B Environmental, 2018, 237:449-463. doi: 10.1016/j.apcatb.2018.06.010
|
[18] |
WU Z, ZENG D B, LIU X Q, et al. Hierarchical δ-Bi2O3/Bi2O2CO3 composite microspheres: phase transformation fabrication, characterization and high photocatalytic performance[J]. Research on Chemical Intermediates, 2018, 44(10):5995-6010. doi: 10.1007/s11164-018-3471-4
|
[19] |
YU C L, WU Z, LIU R Y, et al. Novel fluorinated Bi2MoO6, nanocrystals for efficient photocatalytic removal of water organic pollutants under different light source illumination[J]. Applied Catalysis B Environmental, 2017, 209:1-11. doi: 10.1016/j.apcatb.2017.02.057
|
[20] |
YU C L, LIU R Y, WU Z, et al. The excellent dye-photosensitized degradation performance over hierarchical BiOCl nanostructures fabricated via a facile microwave-hydrothermal process[J]. New Journal of Chemistry, 2018, 42:137-149 doi: 10.1039/C7NJ02990J
|
[21] |
XIAO P Y, LOU J F, ZHANG H X, et al. Enhanced visible-light-driven photocatalysis from WS2 quantum dots coupled to BiOCl nanosheets: synergistic effect and mechanism insight[J]. Catalysis Science & Technology, 2018, 8(1):201-209. https://pubs.rsc.org/en/content/articlelanding/2018/cy/c7cy01784g#!
|
[22] |
刘仁月, 吴榛, 白羽, 等.微米球光催化剂在环境净化及能源转化的研究进展[J].有色金属科学与工程, 2016, 7(6):62-72. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=2016060011
|
[23] |
白羽, 吴榛, 刘仁月, 等.花状Pt/Bi2WO6微米晶合成、表征及其高可见光催化性能[J].有色金属科学与工程, 2016, 7(2):60-66. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201602011
|
[24] |
HE H B, XUE S S, WU Z, et al. Synthesis and characterization of robust Ag2S/Ag2WO4 composite microrods with enhanced photocatalytic performance[J]. Journal of Materials Research, 2016, 31(17):2598-2607. doi: 10.1557/jmr.2016.284
|
[25] |
YU C L, WU Z, LIU R Y, et al. The effects of Gd3+ doping on the physical structure and photocatalytic performance of Bi2MoO6 nanoplate crystals[J]. Journal of Physics & Chemistry of Solids, 2016, 93:7-13. https://www.sciencedirect.com/science/article/abs/pii/S0022369716300300
|
[26] |
YU C L, WU Z, LIU R Y, et al. Novel N/Bi-BiOCl nanoplates synthesised in NH3 atmosphere and their enhanced photocatalytic activity[J]. Materials Research Innovations, 2018, 22(3):121-127. doi: 10.1080/14328917.2016.1264847
|
[27] |
曾德彬, 杨凯, 李笑笑, 等. Ag2CO3@AgBr复合光催化剂的制备, 表征及其可见光催化性能[J].有色金属科学与工程, 2018, 9(1):51-59. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201801009
|
[28] |
田坚, 刘珍, 魏龙福, 等.可见光驱动的核壳结构Ag2S@Ag2CO3催化剂及其对污染物的降解性能[J].有色金属科学与工程, 2017, 8(6):23-35. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=2017060005
|
[29] |
PIRHASHEMI M, HABIBI A. Photosensitization of ZnO by AgBr and Ag2CO3: Nanocomposites with tandem n-n heterojunctions and highly enhanced visible-light photocatalytic activity[J]. Journal of Colloid and Interface Science, 2016, 474:103-113. https://www.sciencedirect.com/science/article/pii/S0021979716302429
|
[30] |
YU C L, WEI L F, CHEN J C, et al. Enhancing the photocatalytic performance of commercial TiO2 crystals by coupling with trace narrow-band-gap Ag2CO3[J]. Industrial & Engineering Chemistry Research, 2014, 53(14):5759-5766. doi: 10.1021/ie404283d
|
[31] |
YU C L, WEI L F, ZHOU W Q, et al. A visible-light-driven core-shell like Ag2S@ Ag2CO3 composite photocatalyst with high performance in pollutants degradation[J]. Chemosphere, 2016, 157:250-261. doi: 10.1016/j.chemosphere.2016.05.021
|
[32] |
WANG H Q, LI J Z, HUO P W, et al. Preparation of Ag2O/Ag2CO3/MWNTs composite photocatalysts for enhancement of ciprofloxacin degradation[J]. Applied Surface Science, 2016, 366:1-8. doi: 10.1016/j.apsusc.2015.12.229
|
[33] |
LIU Y, KONG J J, YUAN J L, et al. Enhanced photocatalytic activity over flower-like sphere Ag/Ag2CO3/BiVO4 plasmonic heterojunction photocatalyst for tetracycline degradation[J]. Chemical Engineering Journal, 2018, 331:242-254. doi: 10.1016/j.cej.2017.08.114
|
[34] |
XIAO P, YUAN H Y, LIU J Q, et al. Radical mechanism of isocyanide-alkyne cycloaddition by multicatalysis of Ag2CO3, solvent, and substrate[J]. ACS Catalysis, 2015, 5(10):6177-6184. doi: 10.1021/acscatal.5b01703
|
[35] |
DONG C, WU K L, WEI X W, et al. Synthesis of graphene oxide-Ag2CO3 composites with improved photoactivity and anti-photocorrosion[J]. Crystengcomm, 2013, 16(4):730-736. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d00fcec03ec1a3e8bc66de09a47a6e9a
|
[36] |
YOSHIKAWA M, YAMADA S, KOGA N. Phenomenological interpretation of the multistep thermal decomposition of silver carbonate to form silver metal[J]. The Journal of Physical Chemistry C, 2014, 118(15):8059-8070. doi: 10.1021/jp501407p
|
[37] |
KE J, LIU J, SUN H Q, et al. Facile assembly of Bi2O3/Bi2S3/MoS2 n-p heterojunction with layered n-Bi2O3, and p-MoS2, for enhanced photocatalytic water oxidation and pollutant degradation[J]. Applied Catalysis B Environmental, 2017, 200:47-55. doi: 10.1016/j.apcatb.2016.06.071
|
[38] |
LIU D T, LI S B, ZHANG P, et al. Efficient planar heterojunction perovskite solar cells with Li-doped compact TiO2 layer[J]. Nano Energy, 2017, 31:462-468. doi: 10.1016/j.nanoen.2016.11.028
|
[39] |
ZHU M, DENG X C, LIN X, et al. The carbon quantum dots modified ZnO/TiO2, nanotube heterojunction and its visible light photocatalysis enhancement[J]. Journal of Materials Science Materials in Electronics, 2018, 29(13):11449-11456. doi: 10.1007/s10854-018-9237-3
|
[40] |
JIN Y J, LINGHU J J, CHAI J W, et al. Defect evolution enhanced visible-light photocatalytic activity in nitrogen-doped anatase TiO2 thin films[J]. Journal of Physical Chemistry C, 2018, 122(29):16600-16606. doi: 10.1021/acs.jpcc.8b04517
|
[41] |
LI Y Y, CAO S B, ZHANG A, et al. Carbon and nitrogen Co-doped bowl-like Au/TiO2, nanostructures with tunable size for enhanced visible-light-driven photocatalysis[J]. Applied Surface Science, 2018, 445:350-358. doi: 10.1016/j.apsusc.2018.03.187
|
[42] |
WEI Q, WANG Y, QIN H Y, et al. Construction of r-GO wrapping octahedral Ag-Cu2O heterostructure for enhanced visible light photocatalytic activity[J]. Applied Catalysis B: Environmental, 2018, 227:132-144. doi: 10.1016/j.apcatb.2018.01.003
|
[43] |
WANG X T, ZHOU J Q, ZHAO S, et al. Synergistic effect of adsorption and visible-light photocatalysis for organic pollutant removal over BiVO4/carbon sphere nanocomposites[J]. Applied Surface Science, 2018, 453:394-404. doi: 10.1016/j.apsusc.2018.05.073
|
[44] |
YE M Y, ZHAO Z H, HU Z F, et al. 0D/2D heterojunctions of vanadate quantum dots/graphitic carbon nitride nanosheets for enhanced visible-light-driven photocatalysis[J]. Angewandte Chemie International Edition, 2017, 129(29):8407-8411. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=53f25d73419b8b29440c2cb658522ab7
|
[45] |
WEN X J, NIU C G, ZHANG L, et al. A novel Ag2O/CeO2 heterojunction photocatalysts for photocatalytic degradation of enrofloxacin: possible degradation pathways, mineralization activity and an in depth mechanism insight[J]. Applied Catalysis B Environmental, 2018, 221:701-714. doi: 10.1016/j.apcatb.2017.09.060
|
[46] |
HE K L, XIE J, LI M L, et al. In situ one-pot fabrication of g-C3N4 nanosheets/NiS cocatalyst heterojunction with intimate interfaces for efficient visible light photocatalytic H2 generation[J]. Applied Surface Science, 2018, 430:208-217. doi: 10.1016/j.apsusc.2017.08.191
|
[47] |
LOW J X, YU J G, JARONIEC M, et al. Heterojunction photocatalysts[J]. Advanced Materials, 2017, 29(20):1601694-1601713. doi: 10.1002/adma.v29.20
|
[48] |
XU C W, LIU Y Y, HUANG B B, et al. Preparation, characterization, and photocatalytic properties of silver carbonate[J]. Applied Surface Science, 2011, 257(20):8732-8736. http://cn.bing.com/academic/profile?id=8a0d7a9586933671f393aa2059224209&encoded=0&v=paper_preview&mkt=zh-cn
|
[49] |
ZHOU L, LIANG L Y, TALIFU D, et al. Sonochemical fabrication of Ag2CO3 nanomaterial and influencing factors on photocatalytic properties[C]//IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2017, 167(1): 012032.
|
[50] |
YU N, DONG R H, LIU J J, et al. Synthesis of Ag/Ag2CO3 heterostructures with high length-diameter ratios for excellent photoactivity and anti-photocorrosion[J]. Rsc Advances, 2016, 106: 103938-103943. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c51586565827c69a9e8688955b463659
|
[51] |
DAI G, LI S, LIU S, et al. Improved Photocatalytic Activity and Stability of Nano-sized Ag/Ag2CO3 Plasmonic Photocatalyst by Surface Modification of Fe(Ⅲ) Nanocluster[J]. Journal of the Chinese Chemical Society, 2015, 62(11): 944-950. doi: 10.1002/jccs.v62.11
|
[52] |
TIAN J, LIU R Y, LIU Z, et al. Boosting the photocatalytic performance of Ag2CO3, crystals in phenol degradation via, coupling with trace N-CQDs[J]. Chinese Journal of Catalysis, 2017, 38(12):1999-2008. doi: 10.1016/S1872-2067(17)62926-7
|
[53] |
LIU S Q, WANG S, DAI G P, et al. Enhanced Visible-Light Photocatalytic Activity and Stability of Nano-Sized Ag2CO3 Combined with Carbon Nanotubes[J]. Acta Physico-Chimica Sinica, 2014, 30(11): 2121-2126.
|
[54] |
DONG H J, CHEN G, SUN J X, et al. Highly-effective photocatalytic properties and interfacial transfer efficiencies of charge carriers for the novel Ag2CO3/AgX heterojunctions achieved by surface modification[J]. Dalton Transactions, 2014, 43(19):7282-7289. doi: 10.1039/C4DT00058G
|
[55] |
LI J J, YANG W L, NING J Q, et al. Rapid formation of AgnX (X= S, Cl, PO4, C2O4) nanotubes via an acid-etching anion exchange reaction[J]. Nanoscale, 2014, 6(11): 5612-5615. doi: 10.1039/C4NR00364K
|
[56] |
YU C L, LI G, KUMAR S, et al. Phase transformation synthesis of novel Ag2O/Ag2CO3 heterostructures with high visible light efficiency in photocatalytic degradation of pollutants[J]. Advanced Materials, 2014, 26(6):892-898. doi: 10.1002/adma.v26.6
|
[57] |
ZHAO X L, SU Y C, QI X D, et al. A facile method to prepare novel Ag2O/Ag2CO3 three-dimensional hollow hierarchical structures and their water purification function[J]. Acs Sustainable Chemistry & Engineering, 2017, 5(7):6148-6158. doi: 10.1021/acssuschemeng.7b01040
|
[58] |
FA W J, WANG P, YUE B, et al. Ag3PO4/Ag2CO3 p-n heterojunction composites with enhanced photocatalytic activity under visible light[J]. Chinese Journal of Catalysis, 2015, 36(12):2186-2193. doi: 10.1016/S1872-2067(15)61004-X
|
[59] |
FANG S S, DING C Y, LIANG Q, et al. In-situ precipitation synthesis of novel BiOCl/Ag2CO3, hybrids with highly efficient visible-light-driven photocatalytic activity[J]. Journal of Alloys and Compounds, 2016, 684:230-236. doi: 10.1016/j.jallcom.2016.05.168
|
[60] |
WANG J, DONG C, JIANG B B, et al. Preparation of visible light-driven Ag2CO3/BiOBr composite photocatalysts with universal degradation abilities[J]. Materials Letters, 2014, 131(12):108-111. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b1a3bbdeeac7fa62c59251d6589f302f
|
[61] |
WANG N, SHI L, YAO L Z, et al. Highly improved visible-light-induced photocatalytic performance over BiOI/Ag2CO3 heterojunctions[J]. Rsc Advances, 2018, 8(1):537-546. https://pubs.rsc.org/en/content/articlelanding/2018/ra/c7ra10423e#!divAbstract
|
[62] |
LI T T, HU X L, LIU C C, et al. Efficient photocatalytic degradation of organic dyes and reaction mechanism with Ag2CO3/Bi2O2CO3 photocatalyst under visible light irradiation[J]. Journal of Molecular Catalysis A: Chemical, 2016, 425:124-135. doi: 10.1016/j.molcata.2016.10.001
|
[63] |
刘仁月, 吴榛, 白羽, 等. Ag2CO3/BiVO4复合微米片光催化剂的制备, 表征及光催化机理[J].无机化学学报, 2017, 33(3):519-527. http://www.cnki.com.cn/Article/CJFDTotal-WJHX201703020.htm
|
[64] |
DAI G P, LIU S Q, LIANG Y, et al. Fabrication of a nano-sized Ag2CO3/reduced graphene oxide photocatalyst with enhanced visible-light photocatalytic activity and stability[J]. Rsc Advances, 2014, 65(4):34226-34231. https://pubs.rsc.org/en/content/articlelanding/2014/ra/c4ra04792c#!divAbstract
|
[65] |
LI J D, WEI L F, YU C L, et al. Preparation and characterization of graphene oxide/Ag2CO3 photocatalyst and its visible light photocatalytic activity[J]. Applied Surface Science, 2015, 358:168-174. doi: 10.1016/j.apsusc.2015.07.007
|
[66] |
XU H, SONG Y X, SONG Y H, et al. Synthesis and characterization of g-C3N4/Ag2CO3 with enhanced visible-light photocatalytic activity for the degradation of organic pollutants[J]. RSC Advances, 2014, 4(65):34539-34547. https://pubs.rsc.org/en/content/articlelanding/2014/ra/c4ra03443k#!divAbstract
|
[67] |
TONDA S, KUMAR S, SHANKER V. In situ growth strategy for highly efficient Ag2CO3/g-C3N4 hetero/nanojunctions with enhanced photocatalytic activity under sunlight irradiation[J]. Journal of Environmental Chemical Engineering, 2015, 3(2):852-861. doi: 10.1016/j.jece.2015.03.021
|
[68] |
TIAN J, WU Z, LIU Z, et al. Low-cost and efficient visible-light-driven CaMg(CO3)2@Ag2CO3 microspheres fabricated via an ion exchange route[J]. Chinese Journal of Catalysis, 2017, 38(11):1899-1908. doi: 10.1016/S1872-2067(17)62924-3
|
[69] |
PANTHI G, PARK S J, KIM T W, et al. Electrospun composite nanofibers of polyacrylonitrile and Ag2CO3 nanoparticles for visible light photocatalysis and antibacterial applications[J]. Journal of Materials Science, 2015, 50(13):4477-4485. doi: 10.1007/s10853-015-8995-z
|
[70] |
CHEN J, DING N W, LI Z F, et al. Organic cathode material for lithium ion battery[J]. Progress in Chemistry, 2015, 27 (9): 1291-1301. http://d.old.wanfangdata.com.cn/Periodical/gfzxb201704008
|
[1] | LIU Bingquan, MAO Shengqiang, OUYANG Renping, OUYANG Shaobo, XIONG Daoling, MA Chongchong, CHEN Jifan, SHU Qing. Thermal decomposition characteristics and swelling performance of two kinds of scrapped tires[J]. Nonferrous Metals Science and Engineering, 2020, 11(2): 51-58. DOI: 10.13264/j.cnki.ysjskx.2020.02.007 |
[2] | SHI Zhenxue, ZHAO Jinqian, LIU Shizhong. Effect of surface defects on the high cycle fatigue properties of a single crystal superalloy[J]. Nonferrous Metals Science and Engineering, 2018, 9(6): 50-54. DOI: 10.13264/j.cnki.ysjskx.2018.06.008 |
[3] | CHEN Wenfei, OUYANG Shaobo, LAN Yuan, XIONG Daoling, MA Chongchong, YANG Jiaqi, ZOU Laixi, SHU Qing. Experiment on the swelling properties and semi-coke thermogravimetric analysis of waste tires[J]. Nonferrous Metals Science and Engineering, 2018, 9(6): 31-37. DOI: 10.13264/j.cnki.ysjskx.2018.06.005 |
[4] | GUO Xueyi, WANG Songsong, WANG Qinmeng, TIAN Qinghua. Development and application of oxygen bottom blowing copper smelting simulation software SKSSIM[J]. Nonferrous Metals Science and Engineering, 2017, 8(4): 1-6. DOI: 10.13264/j.cnki.ysjskx.2017.04.001 |
[5] | ZHAO Kui, YU Bin, LI Qiseng, ZHU Zhicheng, KUANG Zeliang. Experimental study on in-situ stress measurement from marble using acoustic emission method[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 88-93. DOI: 10.13264/j.cnki.ysjskx.2017.03.015 |
[6] | WEN Yan, ZHANG Qinying, GUO Shengda, SU Wei, HUANG Zhu, CHEN Hao. SPS sintering process of WC-6Co cemented carbide[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 74-78. DOI: 10.13264/j.cnki.ysjskx.2017.03.012 |
[7] | LEI Facheng, ZHAO Yuncai. Feasibility analysis of selecting gearbox bearings indenter based on ANSYS[J]. Nonferrous Metals Science and Engineering, 2015, 6(1): 116-120. DOI: 10.13264/j.cnki.ysjskx.2015.01.022 |
[8] | LIN Shou-guang, XIAO Ling-ling. Application of a fast Susan algorithm to preliminary tungsten processing[J]. Nonferrous Metals Science and Engineering, 2013, 4(5): 122-126. DOI: 10.13264/j.cnki.ysjskx.2013.05.005 |
[9] | WANG Hui, WEN Kang, ZHOU Xiang-yang, LI Jie. Preparation of open-celled aluminum foams by countergravity infiltration casting[J]. Nonferrous Metals Science and Engineering, 2013, 4(3): 25-29. DOI: 10.13264/j.cnki.ysjskx.2013.03.005 |
[10] | ZHAO Yun-cai, LEI Fa-cheng. Strength Analysis of Ceramic Filter's Rotary Vacuum Based on ANSYS[J]. Nonferrous Metals Science and Engineering, 2009, 23(3): 42-45. |