Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
ZHANG Mengdi, CHEN Fanyun, MA Xiaoshuai, YANG Kai, YU Changlin. Preparation and application of nano-micro Ag2CO3 photocatalytic materials[J]. Nonferrous Metals Science and Engineering, 2019, 10(2): 52-61. DOI: 10.13264/j.cnki.ysjskx.2019.02.008
Citation: ZHANG Mengdi, CHEN Fanyun, MA Xiaoshuai, YANG Kai, YU Changlin. Preparation and application of nano-micro Ag2CO3 photocatalytic materials[J]. Nonferrous Metals Science and Engineering, 2019, 10(2): 52-61. DOI: 10.13264/j.cnki.ysjskx.2019.02.008

Preparation and application of nano-micro Ag2CO3 photocatalytic materials

More Information
  • Received Date: December 26, 2018
  • Published Date: April 29, 2019
  • Ag2CO3 is a new type of visible light responsive photocatalyst discovered in recent years, which with efficient photodegradation ability for methyl orange (MO), rhodamine B (RhB), methylene blue (MB) dyes and phenols. But, Ag+ in Ag2CO3 is easy to be reduced Ag by the photogenarated e-, which induced the fast photocorrosion and poor stability in the photocatalytic reaction process.The light absorption region, the stability and photocatalytic activities of Ag2CO3 semiconductor can be extended by noble metal deposition, nonmetal doping and formation of heterojunction, meanwhile, the separation of photo-generated electron-hole pairs can also be promoted. The physical properties such as morphology, crystal size and crystal defects of Ag2CO3 can be controlled by different physical and chemical methods to obtain high specific surface area, unique morphology and high separation efficiency of photo-generated electron holes and superior photocatalytic activity. The research progress of Ag2CO3 nano photocatalyst is reviewed and its photocatalytic character is analyzed. The strategies for enhancing the photocatalytic activity and stability of Ag2CO3 are summarized and discussed, and the research prospect of Ag2CO3 nano-micro photocatalyst is proposed.
  • [1]
    GUO S H, BAO J X, HU T, et al. Controllable synthesis porous Ag2CO3 nanorods for efficient photocatalysis[J]. Nanoscale Research Letters, 2015, 10(1):193-200. doi: 10.1186/s11671-015-0892-5
    [2]
    曹文杰, 徐俊晖, 王亚珍.石墨烯及其复合材料吸附降解有机污染物的研究进展[J].江汉大学学报(自然科学版), 2017, 45(4):298-306. http://d.old.wanfangdata.com.cn/Periodical/jhdxxb201704002
    [3]
    LONCAREVIC D, VUKOJE I, DOSTANIC J, et al. Antimicrobial and photocatalytic abilities of Ag2CO3 nano-rods[J]. ChemistrySelect, 2017, 2(10):2931-2938. doi: 10.1002/slct.201700003
    [4]
    王茀学, 衣晓虹, 王崇臣, 等.一种稳定二维配位聚合物用于光催化还原Cr (Ⅵ)及降解有机污染物[J].催化学报, 2017, 38(12):2141-2149. http://www.cnki.com.cn/Article/CJFDTotal-CHUA201712023.htm
    [5]
    WOJTYLA S, BARAN T. Insight on doped ZnS and its activity towards photocatalytic removing of Cr(Ⅵ) from wastewater in the presence of organic pollutants[J]. Materials Chemistry & Physics, 2018, 212:103-112. http://www.chemeurope.com/en/publications/1170647/insight-on-doped-zns-and-its-activity-towards-photocatalytic-removing-of-cr-vi-from-wastewater-in-the-presence-of-organic-pollutants.html
    [6]
    高博, 刘彬, 王新, 等.半导体材料联合超声用于降解有机污染物研究进展[J].生态与农村环境学报, 2018, 34(6):481-488. http://d.old.wanfangdata.com.cn/Periodical/ncsthj201806001
    [7]
    YU H J, SHI R, ZHAO Y X, et al. Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution[J]. Advanced Materials, 2017, 29(16):1605148-1605154. doi: 10.1002/adma.201605148
    [8]
    马小帅, 陈范云, 张萌迪, 等. G-C3N4基光催化剂的制备和应用[J].有色金属科学与工程, 2018, 9(3):42-52. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201803008
    [9]
    薛霜霜, 何洪波, 吴榛, 等.研磨-焙烧法制备BiOI/BiOBr异质结光催化剂及其光催化性能[J].有色金属科学与工程, 2017, 8(1):86-93. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201701015
    [10]
    FANG X Z, SHANG Q C, WANG Y, et al. Single Pt atoms confined into a metal-organic framework for efficient photocatalysis[J]. Advanced Materials, 2018, 30(7):1705112-170519. doi: 10.1002/adma.201705112
    [11]
    LI J D, YU C L, FANG W, et al. Preparation, characterization and photocatalytic performance of heterostructured AgCl/Bi2WO6 microspheres[J]. Chinese Journal of Catalysis, 2015, 36(7):987-993. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cuihuaxb201507012
    [12]
    魏龙福, 余长林, 陈建钗, 等.水热法合成Ag2CO3/ZnO异质结复合光催化剂及其光催化性能[J].有色金属科学与工程, 2014, 5(1):47-53. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201401009
    [13]
    WANG G Z, YUAN H K, CHANG J L, et al. ZnO/MoX2 (X=S, Se) composites used for visible light photocatalysis[J]. Rsc Advances, 2018, 8(20):10828-10835. doi: 10.1039/C7RA10425A
    [14]
    LI H, LI J, AI Z H, et al. Oxygen vacancy-mediated photocatalysis of BiOCl: reactivity, selectivity, and perspectives[J]. Angewandte Chemie International Edition, 2018, 57(1):122-138. doi: 10.1002/anie.201705628
    [15]
    魏龙福, 余长林.石墨烯/半导体复合光催化剂的研究进展[J].有色金属科学与工程, 2013, 4(3):34-39. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201303007
    [16]
    樊启哲, 钟立钦, 冯庐平, 等.肖特基型光催化剂研究进展[J].材料导报, 2018, 31(9):106-111. http://d.old.wanfangdata.com.cn/Periodical/cldb201709014
    [17]
    ZENG D B, YANG K, YU C L, et al. Phase transformation and microwave hydrothermal guided a novel double Z-scheme ternary vanadate heterojunction with highly efficient photocatalytic performance[J]. Applied Catalysis B Environmental, 2018, 237:449-463. doi: 10.1016/j.apcatb.2018.06.010
    [18]
    WU Z, ZENG D B, LIU X Q, et al. Hierarchical δ-Bi2O3/Bi2O2CO3 composite microspheres: phase transformation fabrication, characterization and high photocatalytic performance[J]. Research on Chemical Intermediates, 2018, 44(10):5995-6010. doi: 10.1007/s11164-018-3471-4
    [19]
    YU C L, WU Z, LIU R Y, et al. Novel fluorinated Bi2MoO6, nanocrystals for efficient photocatalytic removal of water organic pollutants under different light source illumination[J]. Applied Catalysis B Environmental, 2017, 209:1-11. doi: 10.1016/j.apcatb.2017.02.057
    [20]
    YU C L, LIU R Y, WU Z, et al. The excellent dye-photosensitized degradation performance over hierarchical BiOCl nanostructures fabricated via a facile microwave-hydrothermal process[J]. New Journal of Chemistry, 2018, 42:137-149 doi: 10.1039/C7NJ02990J
    [21]
    XIAO P Y, LOU J F, ZHANG H X, et al. Enhanced visible-light-driven photocatalysis from WS2 quantum dots coupled to BiOCl nanosheets: synergistic effect and mechanism insight[J]. Catalysis Science & Technology, 2018, 8(1):201-209. https://pubs.rsc.org/en/content/articlelanding/2018/cy/c7cy01784g#!
    [22]
    刘仁月, 吴榛, 白羽, 等.微米球光催化剂在环境净化及能源转化的研究进展[J].有色金属科学与工程, 2016, 7(6):62-72. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=2016060011
    [23]
    白羽, 吴榛, 刘仁月, 等.花状Pt/Bi2WO6微米晶合成、表征及其高可见光催化性能[J].有色金属科学与工程, 2016, 7(2):60-66. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201602011
    [24]
    HE H B, XUE S S, WU Z, et al. Synthesis and characterization of robust Ag2S/Ag2WO4 composite microrods with enhanced photocatalytic performance[J]. Journal of Materials Research, 2016, 31(17):2598-2607. doi: 10.1557/jmr.2016.284
    [25]
    YU C L, WU Z, LIU R Y, et al. The effects of Gd3+ doping on the physical structure and photocatalytic performance of Bi2MoO6 nanoplate crystals[J]. Journal of Physics & Chemistry of Solids, 2016, 93:7-13. https://www.sciencedirect.com/science/article/abs/pii/S0022369716300300
    [26]
    YU C L, WU Z, LIU R Y, et al. Novel N/Bi-BiOCl nanoplates synthesised in NH3 atmosphere and their enhanced photocatalytic activity[J]. Materials Research Innovations, 2018, 22(3):121-127. doi: 10.1080/14328917.2016.1264847
    [27]
    曾德彬, 杨凯, 李笑笑, 等. Ag2CO3@AgBr复合光催化剂的制备, 表征及其可见光催化性能[J].有色金属科学与工程, 2018, 9(1):51-59. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201801009
    [28]
    田坚, 刘珍, 魏龙福, 等.可见光驱动的核壳结构Ag2S@Ag2CO3催化剂及其对污染物的降解性能[J].有色金属科学与工程, 2017, 8(6):23-35. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=2017060005
    [29]
    PIRHASHEMI M, HABIBI A. Photosensitization of ZnO by AgBr and Ag2CO3: Nanocomposites with tandem n-n heterojunctions and highly enhanced visible-light photocatalytic activity[J]. Journal of Colloid and Interface Science, 2016, 474:103-113. https://www.sciencedirect.com/science/article/pii/S0021979716302429
    [30]
    YU C L, WEI L F, CHEN J C, et al. Enhancing the photocatalytic performance of commercial TiO2 crystals by coupling with trace narrow-band-gap Ag2CO3[J]. Industrial & Engineering Chemistry Research, 2014, 53(14):5759-5766. doi: 10.1021/ie404283d
    [31]
    YU C L, WEI L F, ZHOU W Q, et al. A visible-light-driven core-shell like Ag2S@ Ag2CO3 composite photocatalyst with high performance in pollutants degradation[J]. Chemosphere, 2016, 157:250-261. doi: 10.1016/j.chemosphere.2016.05.021
    [32]
    WANG H Q, LI J Z, HUO P W, et al. Preparation of Ag2O/Ag2CO3/MWNTs composite photocatalysts for enhancement of ciprofloxacin degradation[J]. Applied Surface Science, 2016, 366:1-8. doi: 10.1016/j.apsusc.2015.12.229
    [33]
    LIU Y, KONG J J, YUAN J L, et al. Enhanced photocatalytic activity over flower-like sphere Ag/Ag2CO3/BiVO4 plasmonic heterojunction photocatalyst for tetracycline degradation[J]. Chemical Engineering Journal, 2018, 331:242-254. doi: 10.1016/j.cej.2017.08.114
    [34]
    XIAO P, YUAN H Y, LIU J Q, et al. Radical mechanism of isocyanide-alkyne cycloaddition by multicatalysis of Ag2CO3, solvent, and substrate[J]. ACS Catalysis, 2015, 5(10):6177-6184. doi: 10.1021/acscatal.5b01703
    [35]
    DONG C, WU K L, WEI X W, et al. Synthesis of graphene oxide-Ag2CO3 composites with improved photoactivity and anti-photocorrosion[J]. Crystengcomm, 2013, 16(4):730-736. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d00fcec03ec1a3e8bc66de09a47a6e9a
    [36]
    YOSHIKAWA M, YAMADA S, KOGA N. Phenomenological interpretation of the multistep thermal decomposition of silver carbonate to form silver metal[J]. The Journal of Physical Chemistry C, 2014, 118(15):8059-8070. doi: 10.1021/jp501407p
    [37]
    KE J, LIU J, SUN H Q, et al. Facile assembly of Bi2O3/Bi2S3/MoS2 n-p heterojunction with layered n-Bi2O3, and p-MoS2, for enhanced photocatalytic water oxidation and pollutant degradation[J]. Applied Catalysis B Environmental, 2017, 200:47-55. doi: 10.1016/j.apcatb.2016.06.071
    [38]
    LIU D T, LI S B, ZHANG P, et al. Efficient planar heterojunction perovskite solar cells with Li-doped compact TiO2 layer[J]. Nano Energy, 2017, 31:462-468. doi: 10.1016/j.nanoen.2016.11.028
    [39]
    ZHU M, DENG X C, LIN X, et al. The carbon quantum dots modified ZnO/TiO2, nanotube heterojunction and its visible light photocatalysis enhancement[J]. Journal of Materials Science Materials in Electronics, 2018, 29(13):11449-11456. doi: 10.1007/s10854-018-9237-3
    [40]
    JIN Y J, LINGHU J J, CHAI J W, et al. Defect evolution enhanced visible-light photocatalytic activity in nitrogen-doped anatase TiO2 thin films[J]. Journal of Physical Chemistry C, 2018, 122(29):16600-16606. doi: 10.1021/acs.jpcc.8b04517
    [41]
    LI Y Y, CAO S B, ZHANG A, et al. Carbon and nitrogen Co-doped bowl-like Au/TiO2, nanostructures with tunable size for enhanced visible-light-driven photocatalysis[J]. Applied Surface Science, 2018, 445:350-358. doi: 10.1016/j.apsusc.2018.03.187
    [42]
    WEI Q, WANG Y, QIN H Y, et al. Construction of r-GO wrapping octahedral Ag-Cu2O heterostructure for enhanced visible light photocatalytic activity[J]. Applied Catalysis B: Environmental, 2018, 227:132-144. doi: 10.1016/j.apcatb.2018.01.003
    [43]
    WANG X T, ZHOU J Q, ZHAO S, et al. Synergistic effect of adsorption and visible-light photocatalysis for organic pollutant removal over BiVO4/carbon sphere nanocomposites[J]. Applied Surface Science, 2018, 453:394-404. doi: 10.1016/j.apsusc.2018.05.073
    [44]
    YE M Y, ZHAO Z H, HU Z F, et al. 0D/2D heterojunctions of vanadate quantum dots/graphitic carbon nitride nanosheets for enhanced visible-light-driven photocatalysis[J]. Angewandte Chemie International Edition, 2017, 129(29):8407-8411. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=53f25d73419b8b29440c2cb658522ab7
    [45]
    WEN X J, NIU C G, ZHANG L, et al. A novel Ag2O/CeO2 heterojunction photocatalysts for photocatalytic degradation of enrofloxacin: possible degradation pathways, mineralization activity and an in depth mechanism insight[J]. Applied Catalysis B Environmental, 2018, 221:701-714. doi: 10.1016/j.apcatb.2017.09.060
    [46]
    HE K L, XIE J, LI M L, et al. In situ one-pot fabrication of g-C3N4 nanosheets/NiS cocatalyst heterojunction with intimate interfaces for efficient visible light photocatalytic H2 generation[J]. Applied Surface Science, 2018, 430:208-217. doi: 10.1016/j.apsusc.2017.08.191
    [47]
    LOW J X, YU J G, JARONIEC M, et al. Heterojunction photocatalysts[J]. Advanced Materials, 2017, 29(20):1601694-1601713. doi: 10.1002/adma.v29.20
    [48]
    XU C W, LIU Y Y, HUANG B B, et al. Preparation, characterization, and photocatalytic properties of silver carbonate[J]. Applied Surface Science, 2011, 257(20):8732-8736. http://cn.bing.com/academic/profile?id=8a0d7a9586933671f393aa2059224209&encoded=0&v=paper_preview&mkt=zh-cn
    [49]
    ZHOU L, LIANG L Y, TALIFU D, et al. Sonochemical fabrication of Ag2CO3 nanomaterial and influencing factors on photocatalytic properties[C]//IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2017, 167(1): 012032.
    [50]
    YU N, DONG R H, LIU J J, et al. Synthesis of Ag/Ag2CO3 heterostructures with high length-diameter ratios for excellent photoactivity and anti-photocorrosion[J]. Rsc Advances, 2016, 106: 103938-103943. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c51586565827c69a9e8688955b463659
    [51]
    DAI G, LI S, LIU S, et al. Improved Photocatalytic Activity and Stability of Nano-sized Ag/Ag2CO3 Plasmonic Photocatalyst by Surface Modification of Fe(Ⅲ) Nanocluster[J]. Journal of the Chinese Chemical Society, 2015, 62(11): 944-950. doi: 10.1002/jccs.v62.11
    [52]
    TIAN J, LIU R Y, LIU Z, et al. Boosting the photocatalytic performance of Ag2CO3, crystals in phenol degradation via, coupling with trace N-CQDs[J]. Chinese Journal of Catalysis, 2017, 38(12):1999-2008. doi: 10.1016/S1872-2067(17)62926-7
    [53]
    LIU S Q, WANG S, DAI G P, et al. Enhanced Visible-Light Photocatalytic Activity and Stability of Nano-Sized Ag2CO3 Combined with Carbon Nanotubes[J]. Acta Physico-Chimica Sinica, 2014, 30(11): 2121-2126.
    [54]
    DONG H J, CHEN G, SUN J X, et al. Highly-effective photocatalytic properties and interfacial transfer efficiencies of charge carriers for the novel Ag2CO3/AgX heterojunctions achieved by surface modification[J]. Dalton Transactions, 2014, 43(19):7282-7289. doi: 10.1039/C4DT00058G
    [55]
    LI J J, YANG W L, NING J Q, et al. Rapid formation of AgnX (X= S, Cl, PO4, C2O4) nanotubes via an acid-etching anion exchange reaction[J]. Nanoscale, 2014, 6(11): 5612-5615. doi: 10.1039/C4NR00364K
    [56]
    YU C L, LI G, KUMAR S, et al. Phase transformation synthesis of novel Ag2O/Ag2CO3 heterostructures with high visible light efficiency in photocatalytic degradation of pollutants[J]. Advanced Materials, 2014, 26(6):892-898. doi: 10.1002/adma.v26.6
    [57]
    ZHAO X L, SU Y C, QI X D, et al. A facile method to prepare novel Ag2O/Ag2CO3 three-dimensional hollow hierarchical structures and their water purification function[J]. Acs Sustainable Chemistry & Engineering, 2017, 5(7):6148-6158. doi: 10.1021/acssuschemeng.7b01040
    [58]
    FA W J, WANG P, YUE B, et al. Ag3PO4/Ag2CO3 p-n heterojunction composites with enhanced photocatalytic activity under visible light[J]. Chinese Journal of Catalysis, 2015, 36(12):2186-2193. doi: 10.1016/S1872-2067(15)61004-X
    [59]
    FANG S S, DING C Y, LIANG Q, et al. In-situ precipitation synthesis of novel BiOCl/Ag2CO3, hybrids with highly efficient visible-light-driven photocatalytic activity[J]. Journal of Alloys and Compounds, 2016, 684:230-236. doi: 10.1016/j.jallcom.2016.05.168
    [60]
    WANG J, DONG C, JIANG B B, et al. Preparation of visible light-driven Ag2CO3/BiOBr composite photocatalysts with universal degradation abilities[J]. Materials Letters, 2014, 131(12):108-111. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b1a3bbdeeac7fa62c59251d6589f302f
    [61]
    WANG N, SHI L, YAO L Z, et al. Highly improved visible-light-induced photocatalytic performance over BiOI/Ag2CO3 heterojunctions[J]. Rsc Advances, 2018, 8(1):537-546. https://pubs.rsc.org/en/content/articlelanding/2018/ra/c7ra10423e#!divAbstract
    [62]
    LI T T, HU X L, LIU C C, et al. Efficient photocatalytic degradation of organic dyes and reaction mechanism with Ag2CO3/Bi2O2CO3 photocatalyst under visible light irradiation[J]. Journal of Molecular Catalysis A: Chemical, 2016, 425:124-135. doi: 10.1016/j.molcata.2016.10.001
    [63]
    刘仁月, 吴榛, 白羽, 等. Ag2CO3/BiVO4复合微米片光催化剂的制备, 表征及光催化机理[J].无机化学学报, 2017, 33(3):519-527. http://www.cnki.com.cn/Article/CJFDTotal-WJHX201703020.htm
    [64]
    DAI G P, LIU S Q, LIANG Y, et al. Fabrication of a nano-sized Ag2CO3/reduced graphene oxide photocatalyst with enhanced visible-light photocatalytic activity and stability[J]. Rsc Advances, 2014, 65(4):34226-34231. https://pubs.rsc.org/en/content/articlelanding/2014/ra/c4ra04792c#!divAbstract
    [65]
    LI J D, WEI L F, YU C L, et al. Preparation and characterization of graphene oxide/Ag2CO3 photocatalyst and its visible light photocatalytic activity[J]. Applied Surface Science, 2015, 358:168-174. doi: 10.1016/j.apsusc.2015.07.007
    [66]
    XU H, SONG Y X, SONG Y H, et al. Synthesis and characterization of g-C3N4/Ag2CO3 with enhanced visible-light photocatalytic activity for the degradation of organic pollutants[J]. RSC Advances, 2014, 4(65):34539-34547. https://pubs.rsc.org/en/content/articlelanding/2014/ra/c4ra03443k#!divAbstract
    [67]
    TONDA S, KUMAR S, SHANKER V. In situ growth strategy for highly efficient Ag2CO3/g-C3N4 hetero/nanojunctions with enhanced photocatalytic activity under sunlight irradiation[J]. Journal of Environmental Chemical Engineering, 2015, 3(2):852-861. doi: 10.1016/j.jece.2015.03.021
    [68]
    TIAN J, WU Z, LIU Z, et al. Low-cost and efficient visible-light-driven CaMg(CO3)2@Ag2CO3 microspheres fabricated via an ion exchange route[J]. Chinese Journal of Catalysis, 2017, 38(11):1899-1908. doi: 10.1016/S1872-2067(17)62924-3
    [69]
    PANTHI G, PARK S J, KIM T W, et al. Electrospun composite nanofibers of polyacrylonitrile and Ag2CO3 nanoparticles for visible light photocatalysis and antibacterial applications[J]. Journal of Materials Science, 2015, 50(13):4477-4485. doi: 10.1007/s10853-015-8995-z
    [70]
    CHEN J, DING N W, LI Z F, et al. Organic cathode material for lithium ion battery[J]. Progress in Chemistry, 2015, 27 (9): 1291-1301. http://d.old.wanfangdata.com.cn/Periodical/gfzxb201704008
  • Related Articles

    [1]LIU Bingquan, MAO Shengqiang, OUYANG Renping, OUYANG Shaobo, XIONG Daoling, MA Chongchong, CHEN Jifan, SHU Qing. Thermal decomposition characteristics and swelling performance of two kinds of scrapped tires[J]. Nonferrous Metals Science and Engineering, 2020, 11(2): 51-58. DOI: 10.13264/j.cnki.ysjskx.2020.02.007
    [2]SHI Zhenxue, ZHAO Jinqian, LIU Shizhong. Effect of surface defects on the high cycle fatigue properties of a single crystal superalloy[J]. Nonferrous Metals Science and Engineering, 2018, 9(6): 50-54. DOI: 10.13264/j.cnki.ysjskx.2018.06.008
    [3]CHEN Wenfei, OUYANG Shaobo, LAN Yuan, XIONG Daoling, MA Chongchong, YANG Jiaqi, ZOU Laixi, SHU Qing. Experiment on the swelling properties and semi-coke thermogravimetric analysis of waste tires[J]. Nonferrous Metals Science and Engineering, 2018, 9(6): 31-37. DOI: 10.13264/j.cnki.ysjskx.2018.06.005
    [4]GUO Xueyi, WANG Songsong, WANG Qinmeng, TIAN Qinghua. Development and application of oxygen bottom blowing copper smelting simulation software SKSSIM[J]. Nonferrous Metals Science and Engineering, 2017, 8(4): 1-6. DOI: 10.13264/j.cnki.ysjskx.2017.04.001
    [5]ZHAO Kui, YU Bin, LI Qiseng, ZHU Zhicheng, KUANG Zeliang. Experimental study on in-situ stress measurement from marble using acoustic emission method[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 88-93. DOI: 10.13264/j.cnki.ysjskx.2017.03.015
    [6]WEN Yan, ZHANG Qinying, GUO Shengda, SU Wei, HUANG Zhu, CHEN Hao. SPS sintering process of WC-6Co cemented carbide[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 74-78. DOI: 10.13264/j.cnki.ysjskx.2017.03.012
    [7]LEI Facheng, ZHAO Yuncai. Feasibility analysis of selecting gearbox bearings indenter based on ANSYS[J]. Nonferrous Metals Science and Engineering, 2015, 6(1): 116-120. DOI: 10.13264/j.cnki.ysjskx.2015.01.022
    [8]LIN Shou-guang, XIAO Ling-ling. Application of a fast Susan algorithm to preliminary tungsten processing[J]. Nonferrous Metals Science and Engineering, 2013, 4(5): 122-126. DOI: 10.13264/j.cnki.ysjskx.2013.05.005
    [9]WANG Hui, WEN Kang, ZHOU Xiang-yang, LI Jie. Preparation of open-celled aluminum foams by countergravity infiltration casting[J]. Nonferrous Metals Science and Engineering, 2013, 4(3): 25-29. DOI: 10.13264/j.cnki.ysjskx.2013.03.005
    [10]ZHAO Yun-cai, LEI Fa-cheng. Strength Analysis of Ceramic Filter's Rotary Vacuum Based on ANSYS[J]. Nonferrous Metals Science and Engineering, 2009, 23(3): 42-45.

Catalog

    Article Metrics

    Article views (116) PDF downloads (10) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return