Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
LIN Shou-guang, XIAO Ling-ling. Application of a fast Susan algorithm to preliminary tungsten processing[J]. Nonferrous Metals Science and Engineering, 2013, 4(5): 122-126. DOI: 10.13264/j.cnki.ysjskx.2013.05.005
Citation: LIN Shou-guang, XIAO Ling-ling. Application of a fast Susan algorithm to preliminary tungsten processing[J]. Nonferrous Metals Science and Engineering, 2013, 4(5): 122-126. DOI: 10.13264/j.cnki.ysjskx.2013.05.005

Application of a fast Susan algorithm to preliminary tungsten processing

More Information
  • Received Date: December 26, 2012
  • Published Date: October 30, 2013
  • This paper proposes an improved SUSAN algorithm to improve the tungsten ore processing rate and qualification rate in the preliminary tungsten process. Based on SUSAN algorithm, the method of selecting adaptive threshold t and rapid extracting is put forward by using unique color and textural characteristics of wolframite image.The method is realized by VC ++ programming which is finally applied to edge detection extraction of tungsten ore image. Experiments show that image edge detection has advantages of high accuracy and fast operation. In comparison with the previous method, this method improves the calculation speed by improving the detection results. It has practical significance for the preliminary tungsten processing.
  • [1]
    罗仙平, 路永森, 张建超, 等. 黑钨矿选矿工艺进展[J]. 金属矿山, 2011(12): 87-90. http://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201112027.htm
    [2]
    林海青. 近20年来我国钨选矿技术的进展[J]. 中国钨业, 2001, 16(11): 5-6. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGWU2001Z1019.htm
    [3]
    肖玲玲, 谢斌, 赵秀鸟. 一种基于改进SUSAN算子的钨矿初选算法[J].江西理工大学学报, 2011, 32(3): 30-32. http://www.cnki.com.cn/Article/CJFDTOTAL-NFYX201103009.htm
    [4]
    Smith S M, Brady Y M. SUSAN-A new approach to low level image processing[J]. Journal of Computer Vision, 1997, 23(1): 45-78. doi: 10.1023/A:1007963824710
    [5]
    罗忠亮. 基于改进SUSAN算子的图像边缘检测算法[J]. 重庆工学院学报: 自然科学, 2009, 23(5): 102-106. http://www.cnki.com.cn/Article/CJFDTOTAL-CGGL200905020.htm
    [6]
    刘博, 仲思东. 一种基于自适应阈值的SUSAN角点提取方法[J]. 红外技术, 2006, 28(6): 331-333. http://www.cnki.com.cn/Article/CJFDTOTAL-HWJS200606005.htm
    [7]
    马桂珍, 房宗良, 姚宗中. SUSAN边缘检测算法性能分析与比较[J]. 现代电子技术, 2007, 247(8): 189-191. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDJ200708067.htm
    [8]
    邵泽明, 朱剑英, 王化明. 基于SUSAN算法的分层快速角点检测[J]. 华南理工大学学报: 自然科学版, 2006, 34(7): 65-67. http://www.cnki.com.cn/Article/CJFDTOTAL-HNLG200607014.htm
    [9]
    ZHOU Dong-xiang, LIU Yun-hui, CAI Xuan-ping. An efficient and robust corner detection algorithm[C]//Intelligene Control and Atuomation, Portugal: Conference Publications, 2004: 4020-4024.
    [10]
    席志红, 刘利彬, 许新利. SUSAN角点检测算法改进[J]. 应用科技, 2006, 33(9): 29-32. http://www.cnki.com.cn/Article/CJFDTOTAL-YYKJ200609008.htm
    [11]
    肖玲玲, 赵秀鸟. 一种基于数学形态学与改进的SUSAN算子边缘提取快速算法[J]. 微型机与应用, 2009, 28(23): 76-78. http://www.cnki.com.cn/Article/CJFDTOTAL-WXJY200923025.htm
    [12]
    赵秀鸟. 基于机器视觉的钨矿初选算法研究[D]. 赣州: 江西理工大学, 2009: 44-46.
    [13]
    Roberts L G.Machine perception of three-dimension solid[M].Cambridge: MIT Press, 1965, 159-197.
    [14]
    Sobel L.Camera models and machine perception[M].Stanford: Stanford University, 1970.
    [15]
    Canny J.A computational approach to edge detection[J].Pattern Analysis and Machine Intelligence, 1986, 8(6): 679-698. http://cn.bing.com/academic/profile?id=2145023731&encoded=0&v=paper_preview&mkt=zh-cn
  • Related Articles

    [1]ZENG Senhua, ZHAO Yu, YE Tengfei, HE Ping, HAO Wenzheng. Deformation prediction of multi-step high and steep slope based on Bi-LSTM and SA fusion model[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 125-134. DOI: 10.13264/j.cnki.ysjskx.2025.01.014
    [2]LIU Huizhong, RUI Zuowei, ZHU Hejun, PENG Zhilong. Recognition on ore zone separation points target detection and identification in mineral processing shaking table based on improved YOLOv5 algorithm[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 115-124. DOI: 10.13264/j.cnki.ysjskx.2025.01.013
    [3]SHENG Jianlong, QIAO Yu, WANG Ping, YU Donghua, ZHANG Yanwen. Study on risk prediction of mine karst collapse under the influence of groundwater based on LOF-SMOTE algorithm[J]. Nonferrous Metals Science and Engineering, 2023, 14(3): 372-380. DOI: 10.13264/j.cnki.ysjskx.2023.03.010
    [4]MA Junqi, TAO Xingzhen, PENG Lin, XIE Yufei. Crack detection and recognition based on improved BiSeNetV2[J]. Nonferrous Metals Science and Engineering, 2022, 13(6): 91-97. DOI: 10.13264/j.cnki.ysjskx.2022.06.012
    [5]LUO Xiaoyan, LIU Shun, TANG Wencong, WANG Xingwei. Research on identification and location of blocked ore at ore bin inlet based on Mask RCNN[J]. Nonferrous Metals Science and Engineering, 2022, 13(1): 101-107. DOI: 10.13264/j.cnki.ysjskx.2022.01.013
    [6]GUO Xueyi, WANG Songsong, WANG Qinmeng, TIAN Qinghua. Development and application of oxygen bottom blowing copper smelting simulation software SKSSIM[J]. Nonferrous Metals Science and Engineering, 2017, 8(4): 1-6. DOI: 10.13264/j.cnki.ysjskx.2017.04.001
    [7]WEN Yan, ZHANG Qinying, GUO Shengda, SU Wei, HUANG Zhu, CHEN Hao. SPS sintering process of WC-6Co cemented carbide[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 74-78. DOI: 10.13264/j.cnki.ysjskx.2017.03.012
    [8]WEN Jinlei. Application of Knelson concentrator to gold ore dressing[J]. Nonferrous Metals Science and Engineering, 2016, 7(5): 98-103. DOI: 10.13264/j.cnki.ysjskx.2016.05.018
    [9]LI Ming-zhou, HUANG Jin-di, TONG Chang-ren, ZHANG Wen-hai. A composition soft-sensing model of FeO-Fe2O3-SiO2 ternary slag system based on two-temperature two-density method[J]. Nonferrous Metals Science and Engineering, 2016, 7(5): 37-41. DOI: 10.13264/j.cnki.ysjskx.2016.05.007
    [10]ZHANG Chun-lei, LIU Xue-jun. Application of Global Positioning System in Strip Mine[J]. Nonferrous Metals Science and Engineering, 2008, 22(4): 1-3.
  • Cited by

    Periodical cited type(8)

    1. 李律达,洪鑫,满绪存,陈俏,张建波,刘锦平. Cu-Ni-Ti合金高温热变形行为及热加工图. 有色金属科学与工程. 2022(01): 44-51 . 本站查看
    2. 韩双,陈继强,谢钢平,孔重良. 刮削模具对铝合金焊丝表面刮削效果的影响. 江西冶金. 2022(02): 1-5 .
    3. 杨兵,刘春忠,高恩志,孙巍,刘停,张洪宁,朱明伟,卢天倪. 铸态退火2024合金在不同温度下的变形行为. 材料研究学报. 2022(10): 730-738 .
    4. 刘超,陈继强,文锋,李奇龙,赵鸿金. 循环应变-高温退火制备Al-Cu-Li合金单晶. 有色金属科学与工程. 2021(01): 81-89 . 本站查看
    5. 周朗牙,王日初,王小锋,蔡志勇,董翠鸽. SiCp/2014Al复合材料的热变形行为及本构模型. 有色金属科学与工程. 2021(04): 66-74 . 本站查看
    6. 荆丰伟,武晓燕,段晓鸽,仇鹏,江海涛. AA6014铝合金热变形行为及热加工图. 塑性工程学报. 2021(09): 144-153 .
    7. 徐全磊,谭必丁,陆军合. 车用铝合金5182_O准静态单向拉伸试验. 汽车工程师. 2020(10): 14-16 .
    8. 李鹏飞,邓持清,林新博,齐亮,姚幼甫,徐高磊. 上引连铸TU1热变形行为研究. 有色金属科学与工程. 2019(03): 69-74 . 本站查看

    Other cited types(3)

Catalog

    Article Metrics

    Article views (48) PDF downloads (2) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return