Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
WANG Hui, WEN Kang, ZHOU Xiang-yang, LI Jie. Preparation of open-celled aluminum foams by countergravity infiltration casting[J]. Nonferrous Metals Science and Engineering, 2013, 4(3): 25-29. DOI: 10.13264/j.cnki.ysjskx.2013.03.005
Citation: WANG Hui, WEN Kang, ZHOU Xiang-yang, LI Jie. Preparation of open-celled aluminum foams by countergravity infiltration casting[J]. Nonferrous Metals Science and Engineering, 2013, 4(3): 25-29. DOI: 10.13264/j.cnki.ysjskx.2013.03.005

Preparation of open-celled aluminum foams by countergravity infiltration casting

More Information
  • Received Date: April 26, 2013
  • Published Date: June 29, 2013
  • The open-celled aluminum foams were prepared by counter-gravity infiltration casting system. The quasi-static compression performance and the relationship between void content and the main preparation process parameters were investigated. The experimental results show that there is hardly macro-defect in the foam samples prepared by counter-gravity infiltration casting. The foam materials exhibit uniform pores distribution and structural integrity of every pore. The void content affects the mechanical properties of aluminum foams strongly. The yield stress and plateau stress significantly increase with the decrease of void content. Raising pre-heating temperature, increasing packing pressure and extending dwell time are effective to lower the void content in aluminum foams.
  • [1]
    Zhang C J, Feng Y, Zhang X B. Mechanical properties and absorption of aluminum foam-filled square tubes[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(8): 1380-1386. doi: 10.1016/S1003-6326(09)60308-3
    [2]
    Banhart J. Manufacture, characterisation and application of cellar metals and metal foams[J]. Progress in Materials Science, 2001, 46:559-632. doi: 10.1016/S0079-6425(00)00002-5
    [3]
    Banhart J. Metal foam: production and stability[J]. Advanced Engineering Materials, 2006, 8(9): 781-794. doi: 10.1002/(ISSN)1527-2648
    [4]
    Mori K I, Nishikawa H. Cold repeated forming of compact for aluminium foam[J]. Journal of Materials Processing Technology, 2010, 210(12): 1580-1586. doi: 10.1016/j.jmatprotec.2010.05.005
    [5]
    Amsterdam E, Goodall R, Mortensen A, et al. Fracture behavior of low-density replicated aluminum alloy foams[J]. Materials Science and Engineering A, 2008, 496(1/2): 376-382. https://www.researchgate.net/publication/30498129_Fracture_behavior_of_low-density_replicated_aluminum_alloy_foams
    [6]
    秦福德, 童明波, 何思渊, 等.航空航天返回过程的轻质能量吸收器[J].东南大学学报:自然科学版: 2009, 39(4): 790-794. http://www.cnki.com.cn/Article/CJFDTOTAL-DNDX200904026.htm
    [7]
    Zhou B, Yang Y, Reuter M A, et al. Modelling of aluminium scrap melting in a rotary furnace[J]. Minerals Engineering, 2006, 19(3): 299-308. doi: 10.1016/j.mineng.2005.07.017
    [8]
    Yan Q S, Yu H, Xu Z F, et al. Effect of holding pressure on the microstructure of vacuum counter-pressure casting aluminum alloy[J]. Journal of Alloys and Compounds, 2010, 501: 352-357. doi: 10.1016/j.jallcom.2010.04.103
    [9]
    Berchem K, Mohr U, Bleck W. Controlling the degree of pore opening of metal sponges, prepared by the infiltration preparation method[J]. Materials Science and Engineering A, 2002, 323: 52-57. doi: 10.1016/S0921-5093(01)01365-X
    [10]
    Vogt U F, Gorbar M, Dimopoulos E P, et al. Improving the properties of ceramic foams by a vacuum infiltration process[J]. Journal of the European Ceramic Society, 2010, 30(15): 3005-3011. doi: 10.1016/j.jeurceramsoc.2010.06.003
    [11]
    Despois J F, Marmottant A, Salvo L, et al. Influence of the infiltration pressure on the structure and properties of replicated aluminum foams[J]. Materials Science and Engineering A, 2007, 462: 68-75. doi: 10.1016/j.msea.2006.03.157
    [12]
    周向阳, 尚保卫, 刘宏专.真空渗流法制备通孔泡沫铝及其缺陷分析[J].山西化工, 2008, 28(4): 1-5. http://www.cnki.com.cn/Article/CJFDTOTAL-SDHW200804002.htm
    [13]
    周向阳, 李劼, 刘宏专, 等.一种渗流铸造法制备泡沫金属的渗流装置:中国, 200710034420.1[P].2007-02-12.
    [14]
    Rohatgi P K, Kim J K, Gupta N, et al. Compressive characteristic of A356/fly ash cenosphere composites synthesized by pressure infiltration technique[J]. Composites Part A: Applied Science and Manufacturing, 2006, 37(3): 430-437. doi: 10.1016/j.compositesa.2005.05.047
    [15]
    Cree D, Pugh M. Production and characterization of a three-dimensional cellular metal-filled ceramic composite[J]. Journal of Materials Processing Technology, 2010, 210: 1905-1917. doi: 10.1016/j.jmatprotec.2010.07.002
    [16]
    刘培生.多孔材料引论[M].北京:清华大学出版社, 2004.
    [17]
    Rohatgi P K, Guo R Q, Iksan H, et al. Pressure infiltration technique for synthesis of aluminum-fly ash particulate composite[J]. Materials Science and Engineering A, 2005, 244: 22-30. http://www.academia.edu/21772267/Pressure_infiltration_technique_for_synthesis_of_aluminum_fly_ash_particulate_composite
  • Related Articles

    [1]LIAO Ruixiong, LI Ziwei, LEI Jingang, LIU Zeyuan, WANG Haizhong, LAI Fulin, WANG Boyuan, ZHANG Qian. LiF doping improving the ionic conductivity of the Li1.1Ta0.9Zr0.1SiO5 solid electrolyte at room temperature[J]. Nonferrous Metals Science and Engineering, 2022, 13(6): 58-66. DOI: 10.13264/j.cnki.ysjskx.2022.06.008
    [2]ZOU Jin, HU Shun, LONG Qianqian, LI Baobao, ZHONG Shengwen. A multidimensional binary conductive agent on LiNi0.5Co0.2Mn0.3O2 battery performance[J]. Nonferrous Metals Science and Engineering, 2022, 13(3): 63-68. DOI: 10.13264/j.cnki.ysjskx.2022.03.009
    [3]HAO Tingting, WANG Xu, ZHAI Yuchun, CHANG Yunlong. Investigation of the physicochemical properties of AlF3-(Li, Na)F-(Al2O3-Y2O3) melt[J]. Nonferrous Metals Science and Engineering, 2022, 13(2): 10-15. DOI: 10.13264/j.cnki.ysjskx.2022.02.002
    [4]ZHANG Hao, WANG Guang, ZHANG Shihan, WANG Jingsong, XUE Qingguo. Direct reduction kinetics of copper slag[J]. Nonferrous Metals Science and Engineering, 2019, 10(1): 28-33. DOI: 10.13264/j.cnki.ysjskx.2019.01.005
    [5]SONG Hanlin, JIANG Pingguo, LIU Wenjie, WANG Zhengbing. Research progress on hydrogen reduction kinetics of tungsten oxide[J]. Nonferrous Metals Science and Engineering, 2017, 8(5): 64-69. DOI: 10.13264/j.cnki.ysjskx.2017.05.009
    [6]BAO Morigengaowa, WANG Zhaowen, GAO Bingliang, SHI Zhongning, HU Xianwei. Simple and highly effective new way of measuring electrical conductivity of molten salts[J]. Nonferrous Metals Science and Engineering, 2016, 7(6): 8-12. DOI: 10.13264/j.cnki.ysjskx.2016.06.002
    [7]LI Haozhe, GONG Shuchu, YANG Bao, ZHANG Jia, ZHANG Hong. Electrical conductivity and temperature sensitivity of W/F-modified CuO-based ceramics[J]. Nonferrous Metals Science and Engineering, 2016, 7(2): 54-59. DOI: 10.13264/j.cnki.ysjskx.2016.02.010
    [8]YAO Xi, GUO Hanjie, LI Yongqi, SUN Guanyong, LI Lin. Research on the Direct Reduction of Magnetite for different reducing conditions by Hydrogen[J]. Nonferrous Metals Science and Engineering, 2015, 6(5): 12-16. DOI: 10.13264/j.cnki.ysjskx.2015.05.003
    [9]LIAO Chun-fa, WANG Kun, WANG Xu, YANG Shao-hua, FANG Meng-zhao. Electrical conductivity of NaCl-CaCl2-CaWO4 molten salt system[J]. Nonferrous Metals Science and Engineering, 2013, 4(5): 19-22. DOI: 10.13264/j.cnki.ysjskx.2013.05.020
    [10]SHAO Guo-qiang, LI Lv. Mineralizer Effects on Conductivity of Nano-Alumina Aqueous Dispersions[J]. Nonferrous Metals Science and Engineering, 2007, 21(3): 23-25.
  • Cited by

    Periodical cited type(3)

    1. 陈淑琴,伍桂华,杜盼盼,刘瑞,王浩楠. 煤矸石-铝基陶瓷复合材料的制备与性能分析. 机械工程与自动化. 2024(05): 152-154 .
    2. 母军,易晨浩,韩波,潘雪岗,孙熠,李月明. 透辉石涂层增强铁尾矿建筑陶瓷的制备及性能研究. 陶瓷学报. 2024(06): 1214-1221 .
    3. 陈拥强,刘方波,郭智奇,仝元东,梁健. 钢渣及矿渣对低温烧结建筑陶瓷瓷胎结构与性能的影响. 陶瓷学报. 2024(06): 1222-1230 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (100) PDF downloads (7) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return