Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
SHI Zhenxue, ZHAO Jinqian, LIU Shizhong. Effect of surface defects on the high cycle fatigue properties of a single crystal superalloy[J]. Nonferrous Metals Science and Engineering, 2018, 9(6): 50-54. DOI: 10.13264/j.cnki.ysjskx.2018.06.008
Citation: SHI Zhenxue, ZHAO Jinqian, LIU Shizhong. Effect of surface defects on the high cycle fatigue properties of a single crystal superalloy[J]. Nonferrous Metals Science and Engineering, 2018, 9(6): 50-54. DOI: 10.13264/j.cnki.ysjskx.2018.06.008

Effect of surface defects on the high cycle fatigue properties of a single crystal superalloy

More Information
  • Received Date: June 29, 2018
  • Published Date: December 30, 2018
  • A nickel-based single crystal superalloy was casted using spiral crystal selection in the directional solidification furnace. The standard cylindrical specimens for rotary bending high cycle fatigue test were machined after standard heat treatment. The void with different size was made by an electro-spark machine in the middle of the fatigue sample to simulate blade surface defects. The effect of surface void on high fatigue property of the alloy at 980 ℃ with stress 400 MPa and 500 MPa was investigated respectively. SEM was used to examine the fracture surface of fatigue specimens. The results show that the fatigue lives of the sample with surface void decreased to some extent compared with standard sample and it decreased with the rising size of surface void. SEM observations show that the crack initiation site, the fatigue crack propagation area and the rapid fatigue fracture area can be observed. Compared with standard sample, the fatigue cracks of the sample with surface void initiated at void including surface. All the samples were multi-source fatigue fracture. The rotary bending high cycle fatigue at high temperature all exhibited qusi-cleavage fracture which is different from tensile and stress rupture at same temperature.
  • [1]
    CARON P, KHAN T. Evolution of Ni-based superalloys for single crystal gas turbine blade applications[J]. Aerospace Science Technology, 1999(3): 513-523. http://www.onacademic.com/detail/journal_1000034215731810_8114.html
    [2]
    WALSTON S, CETEL A, MACKAY R, et al. Joint development of a fourth generation single crystal superalloy[C]//Superalloys2004, Pennsylvania, TMS, 2004: 15-24.
    [3]
    RGENC D, VERNAULT C, DESVALLEES Y, et al. MC-NG: Generation single crystal superalloy for future aeronautical turbine blades and vanes[C]//Superalloys 2000, Warrendale, TMS, 2000: 829-837.
    [4]
    ERICKSON G L. The development and application of CMSX-10[C]//Superalloys1996, Warrendale, TMS, 1996: 35-44.
    [5]
    胡壮麒, 刘丽荣, 金涛, 等.镍基单晶高温合金的发展[J].航空发动机, 2005, 31(3): 1-7. doi: 10.3969/j.issn.1672-3147.2005.03.001
    [6]
    刘世忠, 史振学, 熊继春, 等.一种单晶高温合金的组织和持久性能[J].有色金属科学与工程, 2017, 8(1): 118-121. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201701020
    [7]
    史振学, 刘世忠, 熊继春.热等静压对单晶高温合金组织和持久性能的影响[J].稀有金属材料与工程, 2015, 44(9): 2300-2304. http://www.cnki.com.cn/Article/CJFDTOTAL-COSE201509042.htm
    [8]
    CHEN Q Z, KONG Y H, JONES C N, et al. Porosity reduction by minor additions in RR2086 superalloy[J]. Scripta Materialia, 2004, 51: 155-160. doi: 10.1016/j.scriptamat.2004.03.035
    [9]
    余竹焕, 刘林. C对单晶高温合金持久性能的影响[J].金属学报, 2014, 50(7): 854-862. http://d.old.wanfangdata.com.cn/Periodical/shysjs201805001
    [10]
    刘丽荣, 金涛, 孙晓峰, 等.单晶高温合金中的碳化物演化及其作用的研究[J].航空材料学报, 2007, 27(5): 12-16. doi: 10.3969/j.issn.1005-5053.2007.05.003
    [11]
    RETTBERG L H, POLLOCK T M. Localized recrystallization during creep in nickel-based superalloys GTD444 and Rene'N5[J]. Acta Materialia, 2014, 73: 287-297. doi: 10.1016/j.actamat.2014.03.052
    [12]
    LI Z L, XU Q Y, LIU B C. Experimental investigation on recrystallization mechanism of a Ni-base single crystal superalloy[J]. Journal of Alloys and Compounds, 2016, 672: 457-469. doi: 10.1016/j.jallcom.2016.02.149
    [13]
    MATHUR H N, PANWISAWAS C, JONES C N, et al. Nucleation of recrystallisation in castings of single crystal Ni-based superalloys[J]. Acta Materials, 2017, 129: 112-123. doi: 10.1016/j.actamat.2017.02.058
    [14]
    WRIGHT P K, JAIN M, CAMERON D. High cycle fatigue in a single crystal superalloy: Time dependence at elevated temperature[C]//Superalloys2004, Pennsylvania, TMS, 2004: 657-666.
    [15]
    LUKAS P, KUNZ L, SVOBODA M. High cycle fatigue of superalloy single crystals at high mean stress[J]. Materials Science and Engineering:A, 2004, 387/389: 505-510. doi: 10.1016/j.msea.2004.01.093
    [16]
    SHI Z X, LI J R, LIU S Z, et al. High cycle fatigue behavior of the second generation single crystal superalloy DD6[J]. Transaction Nonferrous Metal Society of China, 2011, 21(5): 998-1003. doi: 10.1016/S1003-6326(11)60812-1
    [17]
    史振学, 李嘉荣, 刘世忠, 等.第二代单晶高温合金DD6的低周疲劳行为[J].材料热处理学报, 2011, 32(5): 41-45. http://d.old.wanfangdata.com.cn/Conference/6432738
    [18]
    LIU Y, YU J J, XU Y, et al. High cycle fatigue behavior of a single crystal superalloy at elevated temperatures[J]. Materials Science and Engineering A, 2007, 454/455: 357-366. doi: 10.1016/j.msea.2006.11.045
    [19]
    MÜLLER S, RöSLER J, SOMMER C, et al. The influence of load ratio, temperature, orientation and hold time on fatigue crack growth of CMSX-4[C]. Superalloys2000, Warrendale, TMS, 2000: 347-355.
    [20]
    谢洪吉. DD6单晶高温合金疲劳性能研究[D].北京: 北京航空材料研究院, 2018.
  • Related Articles

    [1]CAI Zhiyong, WEN Jing, WANG Richu, PENG Chaoqun. Application of surface modification of reinforcing phase in metal matrix composites with high thermal conductivity[J]. Nonferrous Metals Science and Engineering, 2024, 15(2): 237-255. DOI: 10.13264/j.cnki.ysjskx.2024.02.011
    [2]LIU Meng, QIN Mengli, BAI Song, LIU Zhiyi. Effect of atomic cluster sizes on the formation of slip bands in the fatigue process and the crack propagation behavior of an Al-Cu-Mg alloy[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 501-510. DOI: 10.13264/j.cnki.ysjskx.2023.04.008
    [3]GAN Minglong, LI Yameng, FU Junxiang. Phase transition and upconversion luminescent properties of NaYF4: Yb, Er@SiO2 at high temperature[J]. Nonferrous Metals Science and Engineering, 2021, 12(1): 75-80. DOI: 10.13264/j.cnki.ysjskx.2021.01.010
    [4]SHI Zhenxue, ZHAO Jinqian. High cycle fatigue properties of a single crystal superalloy at different temperatures[J]. Nonferrous Metals Science and Engineering, 2019, 10(3): 58-63. DOI: 10.13264/j.cnki.ysjskx.2019.03.010
    [5]TANG Yixuan, WANG Mengjun, LI Jilin, PAN Xuezhu, PENG Guangqiang. Effect of homogenization treatment on the pick-up defect on the surface of extruded 6063 aluminum alloy[J]. Nonferrous Metals Science and Engineering, 2018, 9(6): 55-59. DOI: 10.13264/j.cnki.ysjskx.2018.06.009
    [6]XU Bingsheng, WU Hu, HAN Lin, CHEN Junwei, YUAN Zhangfu. Simulation analysis on the surface morphology of Sn-3.0Ag-0.5Cu melting on the inclined Cu substrate[J]. Nonferrous Metals Science and Engineering, 2014, 5(4): 7-12. DOI: 10.13264/j.cnki.ysjskx.2014.04.002
    [7]LI Jun, WU Si-ping. The New Closed Cycle Process for Producing Tungsten Carbide Powder[J]. Nonferrous Metals Science and Engineering, 2010, 24(3-4): 159-160.
    [8]XIAO Guo-hua, QIN Peng-gao, LI Yun-zhou. On the Fatigue Fracture Factor Analysis of Titanium Alloy Spare Parts[J]. Nonferrous Metals Science and Engineering, 2010, 1(01): 38-42.
    [9]CAI Xu. On the Application of Slon High-gradient Magnetic Separator in Cobalt Oxide Mine[J]. Nonferrous Metals Science and Engineering, 2009, 23(2): 16-17,22.
    [10]XU Ling, KANG Ling-ling. Discussion on the Enterprise Life Cycle and the Managers' Concept Skills[J]. Nonferrous Metals Science and Engineering, 2004, 18(4): 6-8.
  • Cited by

    Periodical cited type(1)

    1. 贾东铭,陈乔,郭小载,谢庆明. 基于次声的滑坡监测预警技术研究进展. 科技创新与应用. 2023(14): 7-12+17 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (75) PDF downloads (2) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return