Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
LIU Bingquan, MAO Shengqiang, OUYANG Renping, OUYANG Shaobo, XIONG Daoling, MA Chongchong, CHEN Jifan, SHU Qing. Thermal decomposition characteristics and swelling performance of two kinds of scrapped tires[J]. Nonferrous Metals Science and Engineering, 2020, 11(2): 51-58. DOI: 10.13264/j.cnki.ysjskx.2020.02.007
Citation: LIU Bingquan, MAO Shengqiang, OUYANG Renping, OUYANG Shaobo, XIONG Daoling, MA Chongchong, CHEN Jifan, SHU Qing. Thermal decomposition characteristics and swelling performance of two kinds of scrapped tires[J]. Nonferrous Metals Science and Engineering, 2020, 11(2): 51-58. DOI: 10.13264/j.cnki.ysjskx.2020.02.007

Thermal decomposition characteristics and swelling performance of two kinds of scrapped tires

More Information
  • Received Date: January 10, 2020
  • Published Date: April 29, 2020
  • The paper probes into the thermal decomposition characteristics and swelling properties of scrapped bicycle tires and the automobile one sin detail. The kinetics of the tires' thermal decomposition process was studied by thermal gravimetric analysis to obtain the decomposition characteristics. The results showed that, due to different compositions, the two kinds of tires differed considerably in thermogravimetric curves, and that the process conformed to the first-order kinetic model. In the temperature range of 230~320 ℃, the thermal decomposition activation energies of the scrapped automobile tires and the bicycle ones were both about 25 kJ/mol. In the temperature range of 350~450 ℃, the activation energies were 80.5 kJ/mol and 49.1 kJ/mol, respectively. The effects of benzene, ethyl acetate and carbon disulfide on the swelling performance of the scrapped tires in different sizes at different temperatures were investigated. The results showed that the swelling process didn't comply with the solubility parameter principle, while it conformed to a quasi-first-order kinetic model. The three organic solvents lowered the activation energy of the scrapped bicycle tires' swelling process, facilitating the process. According to the SEM analysis, the scrapped tires soaked in the solvents had more pores on their surface after they were dried, which was beneficial to improving the mass transfer effect.
  • [1]
    MURUGAN S, RAMASWAMY M C, NAGARAJAN G. A comparative study on the performance, emission and combustion studies of a DI diesel engine using distilled tyre pyrolysis oil–diesel blends[J]. Fuel, 2008, 87: 2111-2121. doi: 10.1016/j.fuel.2008.01.008
    [2]
    SIVA M, ONENC S, UÇAR S, et al. Influence of oily wastes on the pyrolysis of scrap tire [J]. Energy Conversion and Management, 2013, 75: 474-481. doi: 10.1016/j.enconman.2013.06.055
    [3]
    WANG W, BAI C, LIN C, et al. Alternative fuel produced from thermal pyrolysis of waste tires and its use in a DI diesel engine [J]. Applied Thermal Engineering, 2016, 93: 330-338. doi: 10.1016/j.applthermaleng.2015.09.056
    [4]
    ZHANG L, ZHOU B, DUAN P, et al. Hydrothermal conversion of scrap tire to liquid fuel [J]. Chemical Engineering Journal, 2016, 285: 157-163. doi: 10.1016/j.cej.2015.10.001
    [5]
    ROWHANI A, RAINEY T J. Scrap tyre management pathways and their use as a fuel—A review [J]. Energies, 2016, 9: 1-26. https://www.mdpi.com/1996-1073/9/11/888
    [6]
    PAOLA G M, YENIFFER C V, NABARLATZ D. Mathematical model of scrap tire rubber pyrolysis in a nonisothermal fixed bed reactor:definition of a chemical mechanism and determination of kinetic parameters [J]. Waste and Biomass Valorization, 2019, 10: 561-573. doi: 10.1007/s12649-017-0079-7
    [7]
    MOKHTAR N M, OMAR R, IDRIS A. Microwave pyrolysis for conversion of materials to energy: a brief review [J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2012, 34(22) 2104-2122. doi: 10.1080/15567036.2010.493923
    [8]
    ACOSTA R, TAVERA C, GAUTHIER-MARADEI P, et al. Production of oil and char by intermediate pyrolysis of scrap tyres: influence on yield and product characteristics [J]. International Journal of Chemical Reactor Engineering, 2015, 13(2): 189-200. doi: 10.1515/ijcre-2014-0137
    [9]
    DAI X, YIN X, WU C, et al. Pyrolysis of waste tires in a circulating fluidized-bed reactor [J]. Energy, 2001, 26:385-399. doi: 10.1016/S0360-5442(01)00003-2
    [10]
    GALVAGNO S, CASU S, CASABIANCA T, et al. Pyrolysis process for the treatment of scrap tyres: Preliminary experimental results [J].Waste Management, 2002, 22: 917-923. doi: 10.1016/S0956-053X(02)00083-1
    [11]
    BANAR M, AKYILDIZ V, ZKAN A, et al. Characterization of pyrolytic oil obtained from pyrolysis of TDF (Tire Derived Fuel) [J]. Energy Conversion and Management, 2012, 62: 22-30. doi: 10.1016/j.enconman.2012.03.019
    [12]
    GAO N, LI A, LI W. Research into fine powder and large particle tyre pyrolysis [J]. Waste Management and Research, 2009, 27:242-250. doi: 10.1177/0734242X08091553
    [13]
    王凤超, 高宁博, 全翠.废轮胎热解技术及炭黑产物的品质提升与应用研究进展[J].化工学报, 2019, 70(8):2864-2875. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgxb201908006
    [14]
    陈守燕.废轮胎热解特性的试验研究[D].济南: 山东大学, 2005.
    [15]
    DONATELLI A, IOVANE P, MOLINO A. High energy syngas production by waste tyres steam gasification in a rotary kiln pilot plant.experimental and numerical investigations [J]. Fuel, 2010, 89: 2721-2728. doi: 10.1016/j.fuel.2010.03.040
    [16]
    JANAJREH I, RAZA S. Numerical simulation of waste tyres gasification [J]. Waste Management and Research, 2015, 33: 460-468. doi: 10.1177/0734242X15573656
    [17]
    李啸颖, 王静松, 陈瑞泷, 等.生物质焦与煤共气化特性研究[J].有色金属科学与工程, 2012, 3 (1) :37-42. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201201009
    [18]
    OSPINA J A, VILLADA S. Methods to characterize liquid and gas combustibles obtain from the useless tyres throw the ASTM norms [J]. Lámpsakos, 2011, 3(6): 23-31.
    [19]
    TRONGKAEW P, UTISTHAM T, REUBROYCHAROEN P, et al. Photocatalytic desulfurization of waste tire pyrolysis Oil [J]. Energies, 2011, 4(11): 1880-1896. doi: 10.3390/en4111880
    [20]
    邓德敏, 刘霞, 廖洪强.废轮胎与煤共热解失重特性研究[J].化工环保, 2010, 30(2): 117-120. doi: 10.3969/j.issn.1006-1878.2010.02.006
    [21]
    吴凯, 朱锦娇, 朱跃钊, 等.废轮胎与生物质共热解特性研究[J].林产化学与工业, 2018, 38(5): 53-60. doi: 10.3969/j.issn.0253-2417.2018.05.008
    [22]
    王俊芝.废轮胎与机油共裂解实验研究[D].青岛: 青岛理工大学, 2018.
    [23]
    杨金鑫.废轮胎与煤焦油共热解制备燃料油和炭黑工艺研究[D].赣州: 江西理工大学, 2014.
    [24]
    OUYANG S, XIONG D, LI Y, et al. Pyrolysis of scrap tyres pretreated by waste coal tar [J]. Carbon Resources Conversion, 2018, 1(3) : 218-227. doi: 10.1016/j.crcon.2018.07.003
    [25]
    张雪.废轮胎热解残渣升级为商业炭黑的研究[D].太原: 太原理工大学, 2018.
    [26]
    单小勇.半焦作为电厂燃料的可行性分析[J].民营科技, 2017(8): 25. http://www.cnki.com.cn/Article/CJFDTotal-MYKJ201708024.htm
    [27]
    MUI E L K, CHEUNG W H, VALIX M, et al. Mesoporous activated carbon from waste tyre rubber for dye removal from effluents [J]. Microporous and Mesoporous Materials, 2010, 130: 287-294. doi: 10.1016/j.micromeso.2009.11.022
    [28]
    OUYANG S, XIONG D, XIE Y, et al. Thermogravimetric kinetic analysis and demineralization of chars from pyrolysis of scrap tire pretreated by waste coal tar[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2019, (in Press). https://cn.bing.com/academic/profile?id=37ee1a55b9ee27b624f6c2a13c6ca0c0&encoded=0&v=paper_preview&mkt=zh-cn
    [29]
    BETANCUR M, MARTINEZ J D, MURILLO R. Production of activated carbon by waste tire thermo-chemical degradation with CO2 [J]. Journal of Hazardous Materials, 2009, 168: 882-887. doi: 10.1016/j.jhazmat.2009.02.167
    [30]
    MURILLO R, AYLON E, NAVARRO M V, et al. The application of thermal processes to valorize waste tyre [J]. Fuel Processing Technology, 2006, 87:143-147. doi: 10.1016/j.fuproc.2005.07.005
    [31]
    ABOULKAS A, EL HARFI K, EL BOUADILI A, et al. Pyrolysis kinetics of polypropylene: morocco oil shale and their mixture [J]. Journal of Thermal Analysis and Calorimetry, 2007, 89: 203-209. doi: 10.1007/s10973-007-7398-z
    [32]
    陈文飞, 欧阳少波, 兰嫒, 等.废轮胎溶胀特性及其半焦热重分析实验[J].有色金属科学与工程, 2018, 9(6): 31-37. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201806005
  • Related Articles

    [1]YANG Yu, XIA Yong, WANG Jun, OUYANG Shaobo, XIONG Daoling, LI Liqing. Kinetics and thermodynamics during pyrolysis of scrap printed circuit board by TGA[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 43-50. DOI: 10.13264/j.cnki.ysjskx.2024.01.006
    [2]LIU Chengfei, LI Jiangping, LIU Dafang, ZHANG Xin, TIAN Qiangkun, ZHANG Wei, XIA Hongying. Pyrolysis characteristics and kinetics analysis of waste computer printed circuit board[J]. Nonferrous Metals Science and Engineering, 2022, 13(1): 38-43. DOI: 10.13264/j.cnki.ysjskx.2022.01.005
    [3]CHEN Wenfei, OUYANG Shaobo, LAN Yuan, XIONG Daoling, MA Chongchong, YANG Jiaqi, ZOU Laixi, SHU Qing. Experiment on the swelling properties and semi-coke thermogravimetric analysis of waste tires[J]. Nonferrous Metals Science and Engineering, 2018, 9(6): 31-37. DOI: 10.13264/j.cnki.ysjskx.2018.06.005
    [4]XIE Sui, CHEN Gong, WANG Xu, YANG Shaohua, LIAO Chunfa. On the thermal decomposition kinetics of graphite fluoride based on non-isothermal thermogravimetry[J]. Nonferrous Metals Science and Engineering, 2018, 9(6): 18-25. DOI: 10.13264/j.cnki.ysjskx.2018.06.003
    [5]TANG Weidong, ZHU Weiwei, JIANG Pingguo, JING Qingxiu. Kinetics of chlorination process of copper oxide[J]. Nonferrous Metals Science and Engineering, 2017, 8(1): 46-50. DOI: 10.13264/j.cnki.ysjskx.2017.01.008
    [6]ZHANG Lina, YUAN Zhangfu, LI Linshan, WU Yan, SUI Dianpeng. Model research of thermal decomposition kinetics of limestone[J]. Nonferrous Metals Science and Engineering, 2016, 7(6): 13-18. DOI: 10.13264/j.cnki.ysjskx.2016.06.003
    [7]DUAN Shengchao, MA Jianjun, GUO Hanjie, SHI Xiao, MAO Yu. Thermodynamic analysis and kinetics mechanism for direct nitridation reaction[J]. Nonferrous Metals Science and Engineering, 2016, 7(4): 14-21. DOI: 10.13264/j.cnki.ysjskx.2016.04.003
    [8]YAN Faming, AI Guanghua, WU Caibin, LI Xiaodong, SHI Zhizhong, MAO Wenming. On the grinding kinetics of tungsten ores[J]. Nonferrous Metals Science and Engineering, 2015, 6(4): 81-85, 120. DOI: 10.13264/j.cnki.ysjskx.2015.04.017
    [9]WU Keng, ZHANG Jiazhi, ZHAO Yong, ZHU Li, SHE Yuan. Research methods on the reaction kinetics of metallurgical reaction engineering[J]. Nonferrous Metals Science and Engineering, 2014, 5(4): 1-6. DOI: 10.13264/j.cnki.ysjskx.2014.04.001
    [10]CHU Ai-min, JIANG Yin-ju, ZHAO Yu-ping. Research for the Rate-determining Step of Metallurgy Kinetics for the Procedure of Thermal Reduction Sm2O3 with Metal La[J]. Nonferrous Metals Science and Engineering, 2005, 19(2): 26-27, 34.

Catalog

    Article Metrics

    Article views (114) PDF downloads (5) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return