Citation: | LIU Bingquan, MAO Shengqiang, OUYANG Renping, OUYANG Shaobo, XIONG Daoling, MA Chongchong, CHEN Jifan, SHU Qing. Thermal decomposition characteristics and swelling performance of two kinds of scrapped tires[J]. Nonferrous Metals Science and Engineering, 2020, 11(2): 51-58. DOI: 10.13264/j.cnki.ysjskx.2020.02.007 |
[1] |
MURUGAN S, RAMASWAMY M C, NAGARAJAN G. A comparative study on the performance, emission and combustion studies of a DI diesel engine using distilled tyre pyrolysis oil–diesel blends[J]. Fuel, 2008, 87: 2111-2121. doi: 10.1016/j.fuel.2008.01.008
|
[2] |
SIVA M, ONENC S, UÇAR S, et al. Influence of oily wastes on the pyrolysis of scrap tire [J]. Energy Conversion and Management, 2013, 75: 474-481. doi: 10.1016/j.enconman.2013.06.055
|
[3] |
WANG W, BAI C, LIN C, et al. Alternative fuel produced from thermal pyrolysis of waste tires and its use in a DI diesel engine [J]. Applied Thermal Engineering, 2016, 93: 330-338. doi: 10.1016/j.applthermaleng.2015.09.056
|
[4] |
ZHANG L, ZHOU B, DUAN P, et al. Hydrothermal conversion of scrap tire to liquid fuel [J]. Chemical Engineering Journal, 2016, 285: 157-163. doi: 10.1016/j.cej.2015.10.001
|
[5] |
ROWHANI A, RAINEY T J. Scrap tyre management pathways and their use as a fuel—A review [J]. Energies, 2016, 9: 1-26. https://www.mdpi.com/1996-1073/9/11/888
|
[6] |
PAOLA G M, YENIFFER C V, NABARLATZ D. Mathematical model of scrap tire rubber pyrolysis in a nonisothermal fixed bed reactor:definition of a chemical mechanism and determination of kinetic parameters [J]. Waste and Biomass Valorization, 2019, 10: 561-573. doi: 10.1007/s12649-017-0079-7
|
[7] |
MOKHTAR N M, OMAR R, IDRIS A. Microwave pyrolysis for conversion of materials to energy: a brief review [J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2012, 34(22) 2104-2122. doi: 10.1080/15567036.2010.493923
|
[8] |
ACOSTA R, TAVERA C, GAUTHIER-MARADEI P, et al. Production of oil and char by intermediate pyrolysis of scrap tyres: influence on yield and product characteristics [J]. International Journal of Chemical Reactor Engineering, 2015, 13(2): 189-200. doi: 10.1515/ijcre-2014-0137
|
[9] |
DAI X, YIN X, WU C, et al. Pyrolysis of waste tires in a circulating fluidized-bed reactor [J]. Energy, 2001, 26:385-399. doi: 10.1016/S0360-5442(01)00003-2
|
[10] |
GALVAGNO S, CASU S, CASABIANCA T, et al. Pyrolysis process for the treatment of scrap tyres: Preliminary experimental results [J].Waste Management, 2002, 22: 917-923. doi: 10.1016/S0956-053X(02)00083-1
|
[11] |
BANAR M, AKYILDIZ V, ZKAN A, et al. Characterization of pyrolytic oil obtained from pyrolysis of TDF (Tire Derived Fuel) [J]. Energy Conversion and Management, 2012, 62: 22-30. doi: 10.1016/j.enconman.2012.03.019
|
[12] |
GAO N, LI A, LI W. Research into fine powder and large particle tyre pyrolysis [J]. Waste Management and Research, 2009, 27:242-250. doi: 10.1177/0734242X08091553
|
[13] |
王凤超, 高宁博, 全翠.废轮胎热解技术及炭黑产物的品质提升与应用研究进展[J].化工学报, 2019, 70(8):2864-2875. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgxb201908006
|
[14] |
陈守燕.废轮胎热解特性的试验研究[D].济南: 山东大学, 2005.
|
[15] |
DONATELLI A, IOVANE P, MOLINO A. High energy syngas production by waste tyres steam gasification in a rotary kiln pilot plant.experimental and numerical investigations [J]. Fuel, 2010, 89: 2721-2728. doi: 10.1016/j.fuel.2010.03.040
|
[16] |
JANAJREH I, RAZA S. Numerical simulation of waste tyres gasification [J]. Waste Management and Research, 2015, 33: 460-468. doi: 10.1177/0734242X15573656
|
[17] |
李啸颖, 王静松, 陈瑞泷, 等.生物质焦与煤共气化特性研究[J].有色金属科学与工程, 2012, 3 (1) :37-42. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201201009
|
[18] |
OSPINA J A, VILLADA S. Methods to characterize liquid and gas combustibles obtain from the useless tyres throw the ASTM norms [J]. Lámpsakos, 2011, 3(6): 23-31.
|
[19] |
TRONGKAEW P, UTISTHAM T, REUBROYCHAROEN P, et al. Photocatalytic desulfurization of waste tire pyrolysis Oil [J]. Energies, 2011, 4(11): 1880-1896. doi: 10.3390/en4111880
|
[20] |
邓德敏, 刘霞, 廖洪强.废轮胎与煤共热解失重特性研究[J].化工环保, 2010, 30(2): 117-120. doi: 10.3969/j.issn.1006-1878.2010.02.006
|
[21] |
吴凯, 朱锦娇, 朱跃钊, 等.废轮胎与生物质共热解特性研究[J].林产化学与工业, 2018, 38(5): 53-60. doi: 10.3969/j.issn.0253-2417.2018.05.008
|
[22] |
王俊芝.废轮胎与机油共裂解实验研究[D].青岛: 青岛理工大学, 2018.
|
[23] |
杨金鑫.废轮胎与煤焦油共热解制备燃料油和炭黑工艺研究[D].赣州: 江西理工大学, 2014.
|
[24] |
OUYANG S, XIONG D, LI Y, et al. Pyrolysis of scrap tyres pretreated by waste coal tar [J]. Carbon Resources Conversion, 2018, 1(3) : 218-227. doi: 10.1016/j.crcon.2018.07.003
|
[25] |
张雪.废轮胎热解残渣升级为商业炭黑的研究[D].太原: 太原理工大学, 2018.
|
[26] |
单小勇.半焦作为电厂燃料的可行性分析[J].民营科技, 2017(8): 25. http://www.cnki.com.cn/Article/CJFDTotal-MYKJ201708024.htm
|
[27] |
MUI E L K, CHEUNG W H, VALIX M, et al. Mesoporous activated carbon from waste tyre rubber for dye removal from effluents [J]. Microporous and Mesoporous Materials, 2010, 130: 287-294. doi: 10.1016/j.micromeso.2009.11.022
|
[28] |
OUYANG S, XIONG D, XIE Y, et al. Thermogravimetric kinetic analysis and demineralization of chars from pyrolysis of scrap tire pretreated by waste coal tar[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2019, (in Press). https://cn.bing.com/academic/profile?id=37ee1a55b9ee27b624f6c2a13c6ca0c0&encoded=0&v=paper_preview&mkt=zh-cn
|
[29] |
BETANCUR M, MARTINEZ J D, MURILLO R. Production of activated carbon by waste tire thermo-chemical degradation with CO2 [J]. Journal of Hazardous Materials, 2009, 168: 882-887. doi: 10.1016/j.jhazmat.2009.02.167
|
[30] |
MURILLO R, AYLON E, NAVARRO M V, et al. The application of thermal processes to valorize waste tyre [J]. Fuel Processing Technology, 2006, 87:143-147. doi: 10.1016/j.fuproc.2005.07.005
|
[31] |
ABOULKAS A, EL HARFI K, EL BOUADILI A, et al. Pyrolysis kinetics of polypropylene: morocco oil shale and their mixture [J]. Journal of Thermal Analysis and Calorimetry, 2007, 89: 203-209. doi: 10.1007/s10973-007-7398-z
|
[32] |
陈文飞, 欧阳少波, 兰嫒, 等.废轮胎溶胀特性及其半焦热重分析实验[J].有色金属科学与工程, 2018, 9(6): 31-37. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201806005
|
[1] | YANG Yu, XIA Yong, WANG Jun, OUYANG Shaobo, XIONG Daoling, LI Liqing. Kinetics and thermodynamics during pyrolysis of scrap printed circuit board by TGA[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 43-50. DOI: 10.13264/j.cnki.ysjskx.2024.01.006 |
[2] | LIU Chengfei, LI Jiangping, LIU Dafang, ZHANG Xin, TIAN Qiangkun, ZHANG Wei, XIA Hongying. Pyrolysis characteristics and kinetics analysis of waste computer printed circuit board[J]. Nonferrous Metals Science and Engineering, 2022, 13(1): 38-43. DOI: 10.13264/j.cnki.ysjskx.2022.01.005 |
[3] | CHEN Wenfei, OUYANG Shaobo, LAN Yuan, XIONG Daoling, MA Chongchong, YANG Jiaqi, ZOU Laixi, SHU Qing. Experiment on the swelling properties and semi-coke thermogravimetric analysis of waste tires[J]. Nonferrous Metals Science and Engineering, 2018, 9(6): 31-37. DOI: 10.13264/j.cnki.ysjskx.2018.06.005 |
[4] | XIE Sui, CHEN Gong, WANG Xu, YANG Shaohua, LIAO Chunfa. On the thermal decomposition kinetics of graphite fluoride based on non-isothermal thermogravimetry[J]. Nonferrous Metals Science and Engineering, 2018, 9(6): 18-25. DOI: 10.13264/j.cnki.ysjskx.2018.06.003 |
[5] | TANG Weidong, ZHU Weiwei, JIANG Pingguo, JING Qingxiu. Kinetics of chlorination process of copper oxide[J]. Nonferrous Metals Science and Engineering, 2017, 8(1): 46-50. DOI: 10.13264/j.cnki.ysjskx.2017.01.008 |
[6] | ZHANG Lina, YUAN Zhangfu, LI Linshan, WU Yan, SUI Dianpeng. Model research of thermal decomposition kinetics of limestone[J]. Nonferrous Metals Science and Engineering, 2016, 7(6): 13-18. DOI: 10.13264/j.cnki.ysjskx.2016.06.003 |
[7] | DUAN Shengchao, MA Jianjun, GUO Hanjie, SHI Xiao, MAO Yu. Thermodynamic analysis and kinetics mechanism for direct nitridation reaction[J]. Nonferrous Metals Science and Engineering, 2016, 7(4): 14-21. DOI: 10.13264/j.cnki.ysjskx.2016.04.003 |
[8] | YAN Faming, AI Guanghua, WU Caibin, LI Xiaodong, SHI Zhizhong, MAO Wenming. On the grinding kinetics of tungsten ores[J]. Nonferrous Metals Science and Engineering, 2015, 6(4): 81-85, 120. DOI: 10.13264/j.cnki.ysjskx.2015.04.017 |
[9] | WU Keng, ZHANG Jiazhi, ZHAO Yong, ZHU Li, SHE Yuan. Research methods on the reaction kinetics of metallurgical reaction engineering[J]. Nonferrous Metals Science and Engineering, 2014, 5(4): 1-6. DOI: 10.13264/j.cnki.ysjskx.2014.04.001 |
[10] | CHU Ai-min, JIANG Yin-ju, ZHAO Yu-ping. Research for the Rate-determining Step of Metallurgy Kinetics for the Procedure of Thermal Reduction Sm2O3 with Metal La[J]. Nonferrous Metals Science and Engineering, 2005, 19(2): 26-27, 34. |