Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
WEN Yan, ZHANG Qinying, GUO Shengda, SU Wei, HUANG Zhu, CHEN Hao. SPS sintering process of WC-6Co cemented carbide[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 74-78. DOI: 10.13264/j.cnki.ysjskx.2017.03.012
Citation: WEN Yan, ZHANG Qinying, GUO Shengda, SU Wei, HUANG Zhu, CHEN Hao. SPS sintering process of WC-6Co cemented carbide[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 74-78. DOI: 10.13264/j.cnki.ysjskx.2017.03.012

SPS sintering process of WC-6Co cemented carbide

More Information
  • Received Date: November 13, 2016
  • Published Date: June 29, 2017
  • WC-6Co cemented carbide were prepared by spark plasma sintering (SPS) at different sintering temperatures, holding times and sintering pressures with WC-6Co composite powders, whose average particle sizes are scaled about 30 μm and hollow spherical wall thickness 1.8 μm, as raw materials. The organization and properties of the alloy are characterized by SEM and cobalt magnetic. The results show that the density and hardness of the alloy increase with the rising sintering temperature. The density and hardness of the alloy increases with the prolonging holding time, and then tends to be stable. Sintering pressure has little effect on the properties of the alloy. The optimal sintering process is sintered at 1 250 ℃ for 5 min under 50 MPa. The density of the alloy prepared by the optimum sintering process is 14.69 g/cm3 and the fracture toughness is 12.23 MPa ·m1/2 with fine and uniform microstructure.
  • [1]
    张凤林.WC-Co硬质合金的强韧化[J].粉末冶金术, 2003, 21(4):236-240. http://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ200304011.htm
    [2]
    饶岩岩, 张久兴, 王澈, 等.钨/钴氧化物SPS直接烧结碳化原位合成超细WC-Co硬质合金[J].稀有金属与硬质合金, 2006, 34(1):18-21. http://www.cnki.com.cn/Article/CJFDTOTAL-XYJY200601004.htm
    [3]
    邱友绪, 李宁, 张伟, 等. WC-Co超细硬质合金晶粒长大抑机理的研究[J].硬质合金, 2006, 23(4):254-257. http://cdmd.cnki.com.cn/Article/CDMD-10623-1011106176.htm
    [4]
    郑虎春, 范景莲, 杨文华, 等.VC/Cr3C2及配碳量对WC-0.5Co超细硬质合金组织与性能的影响[J].稀有金属材料工程, 2015, 44(4):912-917. http://www.cnki.com.cn/Article/CJFDTOTAL-COSE201504028.htm
    [5]
    王进军.超细晶WC-Co硬质合金制备技术的研究[J].稀有金属与硬质合金, 2015, 43(2):50-53. http://cdmd.cnki.com.cn/Article/CDMD-10403-1017014628.htm
    [6]
    赵世贤, 宋晓艳, 王明胜, 等.预处理工艺对放电等离子体烧结超细晶WC-Co硬质合金组织和性能的影响[J].稀有金属材料与工程, 2010, 39(5):896-901. http://www.cnki.com.cn/Article/CJFDTOTAL-COSE201005032.htm
    [7]
    李艳, 林晨光, 曹瑞军.超细晶WC-Co硬质合金用纳米钴粉的研究现状与展望[J].稀有金属, 2011, 35(3):451-457. http://www.cnki.com.cn/Article/CJFDTOTAL-ZXJS201103025.htm
    [8]
    山泉, 李祖来, 蒋业华, 等.添加Co对碳化钨颗粒增强表层复合材料性能的影响[J].材料研究学报, 2012, 26(5):551-556. http://www.cnki.com.cn/Article/CJFDTOTAL-CYJB201205018.htm
    [9]
    LI Y, XIE K, YE J, etal.Preparation of core-shell WC-C0 composite[J]. Materals Research Innovations, 2013, 399(2):1-5. doi: 10.1179/1433075X13Y.0000000145
    [10]
    ZHANG X H, LIAO L, WANG YJ, et al.Synthesis of ultafine WC-Co core-shell composite powders by chemical reduction method[J]. Asian Journal of Chemistry, 2012, 27(1):327-329. https://www.researchgate.net/publication/288217025_Synthesis_of_Ultrafine_WC-Co_Core-shell_Composite_Powders_by_Chemical_Reduction_Method
    [11]
    侯克思, 杨慧敏, 白佳声, 等.超细晶WC-Co硬质合金的发展及应用[J].粉末冶金工业, 2005, 15(5):41-45. http://cdmd.cnki.com.cn/Article/CDMD-10533-1014146317.htm
    [12]
    郭圣达, 羊建高, 陈颢, 等.直接碳化原位合成WC-Co复合粉末的反应过程[J].功能材料, 2015, 5(46):5128-5131. http://www.cnki.com.cn/Article/CJFDTOTAL-GNCL201505025.htm
    [13]
    羊建高, 吕键, 朱二涛, 等.连续还原碳化法制备纳米WC-Co复合粉研究[J].有色金属科学与工程, 2013, 4(5):23-27. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201308004
    [14]
    孙兰, 李长案, 贾成广.放电等离子烧结压力对超细WC-Co硬质合金性能的影响[J].硬质合金, 2012, 29(1):19-23. http://www.cnki.com.cn/Article/CJFDTOTAL-YZHJ201201004.htm
    [15]
    罗锡裕.放电等离子烧结材料的最新进展[J].粉末冶金工业, 2011, 11(6):7-16. http://www.cnki.com.cn/Article/CJFDTOTAL-FMYG200106000.htm
    [16]
    郭圣达, 易键宏, 鲍瑞.放电等离子烧结制备钨钴硬质合金现状[J].中国钨业, 2015, 30(6):35-42. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGWU201506010.htm
    [17]
    王凯, 宋晓艳, 张久兴, 等.SPS原位反应快速制备WC-6Co硬质合金的研究[J].稀有金属与硬质合金, 2006, 34(4):17-21. http://www.cnki.com.cn/Article/CJFDTOTAL-XYJY200604003.htm
    [18]
    LIU C, LIN N, HE Y H, et al.The effects of micor WC contents on the on the microstructure and mechanical properties of ultrafine WC-(micor WC-Co) cemented carbides[J]. Journal of Alloy and Compounds, 2014, 594(5):76-81.
    [19]
    李亚军, 栾道成, 王正云.烧结工艺对超细WC-6 %Co-0.6 %(VC/Cr3C2/TaC)硬质合金的影响[J].硬质合金, 2012, 29(1):24-29. http://www.cnki.com.cn/Article/CJFDTOTAL-YZHJ201201005.htm
  • Related Articles

    [1]FAN Wenxin, GAO Yang, WANG Pengfei, CHEN Yan, YUAN Xia, PENG Lijun, FU Yabo, ZHANG Zhongtao. Effect of Ni and Si additions on the microstructure and mechanical properties of Cu-7Sn alloy[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 85-95. DOI: 10.13264/j.cnki.ysjskx.2025.01.010
    [2]QI Zhaoming, XU Huaben, LE Shuncong, HUANG Hui, GUO Chengjun, XIAO Xiangpeng, YANG Bin. Effect of rare earth lanthanum on microstructure and properties of Cu-15Ni-8Sn alloy[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 569-579. DOI: 10.13264/j.cnki.ysjskx.2023.04.016
    [3]ZHU Wenjia, ZHAO Zhongmei, LONG Dengcheng, ZHANG Xin, QIN Junhu, LU Hongbo. Study on microstructure and properties of SnBi36Ag0.5Sbx solder alloy[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 536-542. DOI: 10.13264/j.cnki.ysjskx.2023.04.012
    [4]MA Junqi, TAO Xingzhen, PENG Lin, XIE Yufei. Crack detection and recognition based on improved BiSeNetV2[J]. Nonferrous Metals Science and Engineering, 2022, 13(6): 91-97. DOI: 10.13264/j.cnki.ysjskx.2022.06.012
    [5]XIE Fanghao, LI Jianan, DENG Shenghua, LI Weirong. The microstructure and mechanical properties of selective laser melted Al-Zn-Mg-Sc alloy[J]. Nonferrous Metals Science and Engineering, 2022, 13(4): 61-69. DOI: 10.13264/j.cnki.ysjskx.2022.04.008
    [6]CHU Shaosheng, WANG Ling, YOU Weixiong, GUO Jianjun. Effects of anisotropy on the bonding performance of the carbon-fiber-reinforced polyamide 12 coupons manufactured by selective laser sintering[J]. Nonferrous Metals Science and Engineering, 2020, 11(4): 29-36. DOI: 10.13264/j.cnki.ysjskx.2020.04.005
    [7]XU Chang, LUO Jiangbin, PENG Wanwan, CHENG Boming, QIU Shitao, ZHONG Huaiyu, ZHONG Shengwen. SPS sintering and properties of NASICON type solid electrolyte Li1.1Y0.1Zr1.9 (PO4)3[J]. Nonferrous Metals Science and Engineering, 2018, 9(1): 66-70. DOI: 10.13264/j.cnki.ysjskx.2018.01.011
    [8]WANG Qi, JIAO Shuqiang, ZHU Hongmin, ZHAO Shiqiang. SPS sintering of amorphous nano-sized Si2N2O powders and characterization of its sintered bulks[J]. Nonferrous Metals Science and Engineering, 2017, 8(5): 58-63. DOI: 10.13264/j.cnki.ysjskx.2017.05.008
    [9]YE Qing, FENG Xingyu, ZHAO Hongjin. Effects of solid solution time on microstructure and properties of Cu-Ni-Si-Mg alloy[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 79-83. DOI: 10.13264/j.cnki.ysjskx.2017.03.013
    [10]HE Fu-ping, LIU Feng, LI Jian-yun, ZHANG Jing-en, WANG Zhi-xiang. The effects of solution process and aging on Al-Mg-Si-Cu alloy's microstructure and properties[J]. Nonferrous Metals Science and Engineering, 2013, 4(1): 44-48. DOI: 10.13264/j.cnki.ysjskx.2013.01.013
  • Cited by

    Periodical cited type(5)

    1. 喻亮,刘远,张亚坚,姜艳丽. 热轧变形对含0.5%B的6063铝合金导电率和组织性能的影响. 热加工工艺. 2024(13): 138-141 .
    2. 张鹏,胡武,李建明,黄显赞,廖斌. 液氮通入量及挤压速度对6063铝合金型材表面质量的影响. 装备制造技术. 2023(01): 86-88 .
    3. 韩双,陈继强,谢钢平,孔重良. 刮削模具对铝合金焊丝表面刮削效果的影响. 江西冶金. 2022(02): 1-5 .
    4. 王泽群,向文杰,张婷蕊,王孟君,潘学著,王岗. Fe元素对6063铝合金挤压型材表面渣粒的影响. 矿冶工程. 2021(02): 110-114 .
    5. 闫金顺,赵鸿来. 6063-TiCe铝合金散热器的挤压工艺优化. 热加工工艺. 2021(15): 84-87 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (164) PDF downloads (12) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return