Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
WEN Yan, ZHANG Qinying, GUO Shengda, SU Wei, HUANG Zhu, CHEN Hao. SPS sintering process of WC-6Co cemented carbide[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 74-78. DOI: 10.13264/j.cnki.ysjskx.2017.03.012
Citation: WEN Yan, ZHANG Qinying, GUO Shengda, SU Wei, HUANG Zhu, CHEN Hao. SPS sintering process of WC-6Co cemented carbide[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 74-78. DOI: 10.13264/j.cnki.ysjskx.2017.03.012

SPS sintering process of WC-6Co cemented carbide

More Information
  • Received Date: November 13, 2016
  • Published Date: June 29, 2017
  • WC-6Co cemented carbide were prepared by spark plasma sintering (SPS) at different sintering temperatures, holding times and sintering pressures with WC-6Co composite powders, whose average particle sizes are scaled about 30 μm and hollow spherical wall thickness 1.8 μm, as raw materials. The organization and properties of the alloy are characterized by SEM and cobalt magnetic. The results show that the density and hardness of the alloy increase with the rising sintering temperature. The density and hardness of the alloy increases with the prolonging holding time, and then tends to be stable. Sintering pressure has little effect on the properties of the alloy. The optimal sintering process is sintered at 1 250 ℃ for 5 min under 50 MPa. The density of the alloy prepared by the optimum sintering process is 14.69 g/cm3 and the fracture toughness is 12.23 MPa ·m1/2 with fine and uniform microstructure.
  • [1]
    张凤林.WC-Co硬质合金的强韧化[J].粉末冶金术, 2003, 21(4):236-240. http://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ200304011.htm
    [2]
    饶岩岩, 张久兴, 王澈, 等.钨/钴氧化物SPS直接烧结碳化原位合成超细WC-Co硬质合金[J].稀有金属与硬质合金, 2006, 34(1):18-21. http://www.cnki.com.cn/Article/CJFDTOTAL-XYJY200601004.htm
    [3]
    邱友绪, 李宁, 张伟, 等. WC-Co超细硬质合金晶粒长大抑机理的研究[J].硬质合金, 2006, 23(4):254-257. http://cdmd.cnki.com.cn/Article/CDMD-10623-1011106176.htm
    [4]
    郑虎春, 范景莲, 杨文华, 等.VC/Cr3C2及配碳量对WC-0.5Co超细硬质合金组织与性能的影响[J].稀有金属材料工程, 2015, 44(4):912-917. http://www.cnki.com.cn/Article/CJFDTOTAL-COSE201504028.htm
    [5]
    王进军.超细晶WC-Co硬质合金制备技术的研究[J].稀有金属与硬质合金, 2015, 43(2):50-53. http://cdmd.cnki.com.cn/Article/CDMD-10403-1017014628.htm
    [6]
    赵世贤, 宋晓艳, 王明胜, 等.预处理工艺对放电等离子体烧结超细晶WC-Co硬质合金组织和性能的影响[J].稀有金属材料与工程, 2010, 39(5):896-901. http://www.cnki.com.cn/Article/CJFDTOTAL-COSE201005032.htm
    [7]
    李艳, 林晨光, 曹瑞军.超细晶WC-Co硬质合金用纳米钴粉的研究现状与展望[J].稀有金属, 2011, 35(3):451-457. http://www.cnki.com.cn/Article/CJFDTOTAL-ZXJS201103025.htm
    [8]
    山泉, 李祖来, 蒋业华, 等.添加Co对碳化钨颗粒增强表层复合材料性能的影响[J].材料研究学报, 2012, 26(5):551-556. http://www.cnki.com.cn/Article/CJFDTOTAL-CYJB201205018.htm
    [9]
    LI Y, XIE K, YE J, etal.Preparation of core-shell WC-C0 composite[J]. Materals Research Innovations, 2013, 399(2):1-5. doi: 10.1179/1433075X13Y.0000000145
    [10]
    ZHANG X H, LIAO L, WANG YJ, et al.Synthesis of ultafine WC-Co core-shell composite powders by chemical reduction method[J]. Asian Journal of Chemistry, 2012, 27(1):327-329. https://www.researchgate.net/publication/288217025_Synthesis_of_Ultrafine_WC-Co_Core-shell_Composite_Powders_by_Chemical_Reduction_Method
    [11]
    侯克思, 杨慧敏, 白佳声, 等.超细晶WC-Co硬质合金的发展及应用[J].粉末冶金工业, 2005, 15(5):41-45. http://cdmd.cnki.com.cn/Article/CDMD-10533-1014146317.htm
    [12]
    郭圣达, 羊建高, 陈颢, 等.直接碳化原位合成WC-Co复合粉末的反应过程[J].功能材料, 2015, 5(46):5128-5131. http://www.cnki.com.cn/Article/CJFDTOTAL-GNCL201505025.htm
    [13]
    羊建高, 吕键, 朱二涛, 等.连续还原碳化法制备纳米WC-Co复合粉研究[J].有色金属科学与工程, 2013, 4(5):23-27. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201308004
    [14]
    孙兰, 李长案, 贾成广.放电等离子烧结压力对超细WC-Co硬质合金性能的影响[J].硬质合金, 2012, 29(1):19-23. http://www.cnki.com.cn/Article/CJFDTOTAL-YZHJ201201004.htm
    [15]
    罗锡裕.放电等离子烧结材料的最新进展[J].粉末冶金工业, 2011, 11(6):7-16. http://www.cnki.com.cn/Article/CJFDTOTAL-FMYG200106000.htm
    [16]
    郭圣达, 易键宏, 鲍瑞.放电等离子烧结制备钨钴硬质合金现状[J].中国钨业, 2015, 30(6):35-42. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGWU201506010.htm
    [17]
    王凯, 宋晓艳, 张久兴, 等.SPS原位反应快速制备WC-6Co硬质合金的研究[J].稀有金属与硬质合金, 2006, 34(4):17-21. http://www.cnki.com.cn/Article/CJFDTOTAL-XYJY200604003.htm
    [18]
    LIU C, LIN N, HE Y H, et al.The effects of micor WC contents on the on the microstructure and mechanical properties of ultrafine WC-(micor WC-Co) cemented carbides[J]. Journal of Alloy and Compounds, 2014, 594(5):76-81.
    [19]
    李亚军, 栾道成, 王正云.烧结工艺对超细WC-6 %Co-0.6 %(VC/Cr3C2/TaC)硬质合金的影响[J].硬质合金, 2012, 29(1):24-29. http://www.cnki.com.cn/Article/CJFDTOTAL-YZHJ201201005.htm
  • Related Articles

    [1]DU Mingxing, LENG Jinfeng, LI Zhanzhi, YIN Yuhu. Effect of trace Er and Zr addition on mechanical properties of 6082 Al alloy during solid solution-aging treatment[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 139-146. DOI: 10.13264/j.cnki.ysjskx.2024.01.017
    [2]QI Zhaoming, XU Huaben, LE Shuncong, HUANG Hui, GUO Chengjun, XIAO Xiangpeng, YANG Bin. Effect of rare earth lanthanum on microstructure and properties of Cu-15Ni-8Sn alloy[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 569-579. DOI: 10.13264/j.cnki.ysjskx.2023.04.016
    [3]HE Jianing, JIA Yongxin, YU Shuai, SU Ruiming, NIE Sainan. Research progress in non-isothermal aging process of aluminum alloys with high strength and toughness[J]. Nonferrous Metals Science and Engineering, 2022, 13(5): 23-28. DOI: 10.13264/j.cnki.ysjskx.2022.05.004
    [4]LI Xiaohan, HE Jianing, SU Ruiming, YANG Yuping, NIE Sainan, TAN Bing. Effect on stress corrosion cracking of alloy 7075 with two-step aging[J]. Nonferrous Metals Science and Engineering, 2022, 13(3): 69-75. DOI: 10.13264/j.cnki.ysjskx.2022.03.010
    [5]Li YanMei, Wang Mingjia, Zhang Bin, Zhang Shuang, Liu Cong, Ma Zhongren, Wan Zhiyong. Effect of carbon content on microstructure and intergranular corrosion susceptibility of C-276 alloy[J]. Nonferrous Metals Science and Engineering, 2020, 11(4): 56-63. DOI: 10.13264/j.cnki.ysjskx.2020.04.009
    [6]WANG Jingjing, HUANG Yuanchun, LIU Yu, XU Tiancheng. Influence of aging treatment on the microstructure and corrosion properties of Al-Zn-Mg-Cu-Zr-Er aluminum alloy[J]. Nonferrous Metals Science and Engineering, 2018, 9(2): 47-55. DOI: 10.13264/j.cnki.ysjskx.2018.02.009
    [7]YE Qing, FENG Xingyu, ZHAO Hongjin. Effects of solid solution time on microstructure and properties of Cu-Ni-Si-Mg alloy[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 79-83. DOI: 10.13264/j.cnki.ysjskx.2017.03.013
    [8]WANG Song, XIE Ming, LI Aikun, ZHU Gang, WANG Saibei, YANG Youcai, CHEN Song. Preparation and Performance Study of a New Type of Ag-CNTs Electrical Contact Material[J]. Nonferrous Metals Science and Engineering, 2015, 6(5): 40-44. DOI: 10.13264/j.cnki.ysjskx.2015.05.008
    [9]LI Sanhua, LEI Qian, LI Zhou, ZHANG Liang, WANG Mengying, LIU Huiqun. Micro-structures and properties of ultra-high strength Cu-Ni-Si-Mg-Cr alloy[J]. Nonferrous Metals Science and Engineering, 2014, 5(5): 35-38,78. DOI: 10.13264/j.cnki.ysjskx.2014.05.006
    [10]ZHANG Ming-ming, WU Yu. On the aging behavior of Cu-Ni-Si-Zr alloy[J]. Nonferrous Metals Science and Engineering, 2012, 3(2): 12-16. DOI: 10.13264/j.cnki.ysjskx.2012.02.017

Catalog

    Article Metrics

    Article views (164) PDF downloads (12) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return