Citation: | WEN Yan, ZHANG Qinying, GUO Shengda, SU Wei, HUANG Zhu, CHEN Hao. SPS sintering process of WC-6Co cemented carbide[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 74-78. DOI: 10.13264/j.cnki.ysjskx.2017.03.012 |
[1] |
张凤林.WC-Co硬质合金的强韧化[J].粉末冶金术, 2003, 21(4):236-240. http://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ200304011.htm
|
[2] |
饶岩岩, 张久兴, 王澈, 等.钨/钴氧化物SPS直接烧结碳化原位合成超细WC-Co硬质合金[J].稀有金属与硬质合金, 2006, 34(1):18-21. http://www.cnki.com.cn/Article/CJFDTOTAL-XYJY200601004.htm
|
[3] |
邱友绪, 李宁, 张伟, 等. WC-Co超细硬质合金晶粒长大抑机理的研究[J].硬质合金, 2006, 23(4):254-257. http://cdmd.cnki.com.cn/Article/CDMD-10623-1011106176.htm
|
[4] |
郑虎春, 范景莲, 杨文华, 等.VC/Cr3C2及配碳量对WC-0.5Co超细硬质合金组织与性能的影响[J].稀有金属材料工程, 2015, 44(4):912-917. http://www.cnki.com.cn/Article/CJFDTOTAL-COSE201504028.htm
|
[5] |
王进军.超细晶WC-Co硬质合金制备技术的研究[J].稀有金属与硬质合金, 2015, 43(2):50-53. http://cdmd.cnki.com.cn/Article/CDMD-10403-1017014628.htm
|
[6] |
赵世贤, 宋晓艳, 王明胜, 等.预处理工艺对放电等离子体烧结超细晶WC-Co硬质合金组织和性能的影响[J].稀有金属材料与工程, 2010, 39(5):896-901. http://www.cnki.com.cn/Article/CJFDTOTAL-COSE201005032.htm
|
[7] |
李艳, 林晨光, 曹瑞军.超细晶WC-Co硬质合金用纳米钴粉的研究现状与展望[J].稀有金属, 2011, 35(3):451-457. http://www.cnki.com.cn/Article/CJFDTOTAL-ZXJS201103025.htm
|
[8] |
山泉, 李祖来, 蒋业华, 等.添加Co对碳化钨颗粒增强表层复合材料性能的影响[J].材料研究学报, 2012, 26(5):551-556. http://www.cnki.com.cn/Article/CJFDTOTAL-CYJB201205018.htm
|
[9] |
LI Y, XIE K, YE J, etal.Preparation of core-shell WC-C0 composite[J]. Materals Research Innovations, 2013, 399(2):1-5. doi: 10.1179/1433075X13Y.0000000145
|
[10] |
ZHANG X H, LIAO L, WANG YJ, et al.Synthesis of ultafine WC-Co core-shell composite powders by chemical reduction method[J]. Asian Journal of Chemistry, 2012, 27(1):327-329. https://www.researchgate.net/publication/288217025_Synthesis_of_Ultrafine_WC-Co_Core-shell_Composite_Powders_by_Chemical_Reduction_Method
|
[11] |
侯克思, 杨慧敏, 白佳声, 等.超细晶WC-Co硬质合金的发展及应用[J].粉末冶金工业, 2005, 15(5):41-45. http://cdmd.cnki.com.cn/Article/CDMD-10533-1014146317.htm
|
[12] |
郭圣达, 羊建高, 陈颢, 等.直接碳化原位合成WC-Co复合粉末的反应过程[J].功能材料, 2015, 5(46):5128-5131. http://www.cnki.com.cn/Article/CJFDTOTAL-GNCL201505025.htm
|
[13] |
羊建高, 吕键, 朱二涛, 等.连续还原碳化法制备纳米WC-Co复合粉研究[J].有色金属科学与工程, 2013, 4(5):23-27. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201308004
|
[14] |
孙兰, 李长案, 贾成广.放电等离子烧结压力对超细WC-Co硬质合金性能的影响[J].硬质合金, 2012, 29(1):19-23. http://www.cnki.com.cn/Article/CJFDTOTAL-YZHJ201201004.htm
|
[15] |
罗锡裕.放电等离子烧结材料的最新进展[J].粉末冶金工业, 2011, 11(6):7-16. http://www.cnki.com.cn/Article/CJFDTOTAL-FMYG200106000.htm
|
[16] |
郭圣达, 易键宏, 鲍瑞.放电等离子烧结制备钨钴硬质合金现状[J].中国钨业, 2015, 30(6):35-42. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGWU201506010.htm
|
[17] |
王凯, 宋晓艳, 张久兴, 等.SPS原位反应快速制备WC-6Co硬质合金的研究[J].稀有金属与硬质合金, 2006, 34(4):17-21. http://www.cnki.com.cn/Article/CJFDTOTAL-XYJY200604003.htm
|
[18] |
LIU C, LIN N, HE Y H, et al.The effects of micor WC contents on the on the microstructure and mechanical properties of ultrafine WC-(micor WC-Co) cemented carbides[J]. Journal of Alloy and Compounds, 2014, 594(5):76-81.
|
[19] |
李亚军, 栾道成, 王正云.烧结工艺对超细WC-6 %Co-0.6 %(VC/Cr3C2/TaC)硬质合金的影响[J].硬质合金, 2012, 29(1):24-29. http://www.cnki.com.cn/Article/CJFDTOTAL-YZHJ201201005.htm
|
[1] | DU Mingxing, LENG Jinfeng, LI Zhanzhi, YIN Yuhu. Effect of trace Er and Zr addition on mechanical properties of 6082 Al alloy during solid solution-aging treatment[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 139-146. DOI: 10.13264/j.cnki.ysjskx.2024.01.017 |
[2] | QI Zhaoming, XU Huaben, LE Shuncong, HUANG Hui, GUO Chengjun, XIAO Xiangpeng, YANG Bin. Effect of rare earth lanthanum on microstructure and properties of Cu-15Ni-8Sn alloy[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 569-579. DOI: 10.13264/j.cnki.ysjskx.2023.04.016 |
[3] | HE Jianing, JIA Yongxin, YU Shuai, SU Ruiming, NIE Sainan. Research progress in non-isothermal aging process of aluminum alloys with high strength and toughness[J]. Nonferrous Metals Science and Engineering, 2022, 13(5): 23-28. DOI: 10.13264/j.cnki.ysjskx.2022.05.004 |
[4] | LI Xiaohan, HE Jianing, SU Ruiming, YANG Yuping, NIE Sainan, TAN Bing. Effect on stress corrosion cracking of alloy 7075 with two-step aging[J]. Nonferrous Metals Science and Engineering, 2022, 13(3): 69-75. DOI: 10.13264/j.cnki.ysjskx.2022.03.010 |
[5] | Li YanMei, Wang Mingjia, Zhang Bin, Zhang Shuang, Liu Cong, Ma Zhongren, Wan Zhiyong. Effect of carbon content on microstructure and intergranular corrosion susceptibility of C-276 alloy[J]. Nonferrous Metals Science and Engineering, 2020, 11(4): 56-63. DOI: 10.13264/j.cnki.ysjskx.2020.04.009 |
[6] | WANG Jingjing, HUANG Yuanchun, LIU Yu, XU Tiancheng. Influence of aging treatment on the microstructure and corrosion properties of Al-Zn-Mg-Cu-Zr-Er aluminum alloy[J]. Nonferrous Metals Science and Engineering, 2018, 9(2): 47-55. DOI: 10.13264/j.cnki.ysjskx.2018.02.009 |
[7] | YE Qing, FENG Xingyu, ZHAO Hongjin. Effects of solid solution time on microstructure and properties of Cu-Ni-Si-Mg alloy[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 79-83. DOI: 10.13264/j.cnki.ysjskx.2017.03.013 |
[8] | WANG Song, XIE Ming, LI Aikun, ZHU Gang, WANG Saibei, YANG Youcai, CHEN Song. Preparation and Performance Study of a New Type of Ag-CNTs Electrical Contact Material[J]. Nonferrous Metals Science and Engineering, 2015, 6(5): 40-44. DOI: 10.13264/j.cnki.ysjskx.2015.05.008 |
[9] | LI Sanhua, LEI Qian, LI Zhou, ZHANG Liang, WANG Mengying, LIU Huiqun. Micro-structures and properties of ultra-high strength Cu-Ni-Si-Mg-Cr alloy[J]. Nonferrous Metals Science and Engineering, 2014, 5(5): 35-38,78. DOI: 10.13264/j.cnki.ysjskx.2014.05.006 |
[10] | ZHANG Ming-ming, WU Yu. On the aging behavior of Cu-Ni-Si-Zr alloy[J]. Nonferrous Metals Science and Engineering, 2012, 3(2): 12-16. DOI: 10.13264/j.cnki.ysjskx.2012.02.017 |