Citation: | SU Yao, GUO Hanjie, GUO Jing, LUO Yiwa, LI Gang, YANG Qingsong, ZHENG Xiaodan. Effect of Ti content on solidification organization and non-metallic inclusions in 0Cr25Al5 electrothermal alloy[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 8-16. DOI: 10.13264/j.cnki.ysjskx.2025.01.002 |
Alloy microalloying is one of the most important means of improving the performance of ingots. In order to further investigate the effect of Ti element on the solidification organization and non-metallic inclusions of 0Cr25Al5 electric heating alloy ingots on their properties, the thermodynamic software Thermo Calc was first used to calculate the behavior of AlN and TiN precipitates in the solidification front of Fe-Cr-Al-Ti-N-C hexagonal system with different Ti contents (mass fractions, the same below, 0.08%, 0.10%, and 0.12%, respectively) and different N contents (mass fractions, the same below, 0.009%, 0.012%, 0.017%, and 0.020%, respectively), and the control level of N content corresponding to different Ti contents was given. The results of experiments show that the isometric crystal rate obviously reduces for the solidification organization of this alloy with increasing Ti content, and when the content of Ti is 0.082%, the equiaxed crystal rate of lengthwise section reaches the maximum value of 69.56%, on the contrary, the average grain size is the minimum value of 1.96 mm. Thus, the appropriate addition of Ti elements for micro-alloying can improve the solidification organization for this alloy. Meanwhile, automatic inclusion analysis systems were used to detect inclusions in three different Ti content metallographic samples. The results indicate that when Ti content is 0.082%, the number, size, area fraction, and quantity density of inclusions are all at their minimum values. In addition, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were used to observe and analyze the metallographic samples after erosion. It is found that Ti containing inclusions mainly exist in the form of Ti (C, N), TiOx, TiN rare earth composite inclusions, and Ti containing rare earth oxides in the steel ingot. In addition, when the content of Ti is 0.110%, it is also found that a large number of non-metallic inclusions TiN, the size is about 1-2 µm, are found to be enriched at grain boundaries, which causes greater harm to the fatigue properties and mechanical properties for this alloy. In summary, adding 0.082% Ti to the ingot significantly improves the solidification structure and reduces the negative impact of Ti inclusions present in the ingot on the ingot properties.
[1] |
王振虎, 李彬, 郭汉杰, 等. 电热合金钢0Cr21Al6NbRE电渣重熔用渣的研究[J]. 特殊钢, 2020,41(1):6-11.
|
[2] |
于朝清, 尹霜, 方倩倩, 等. 电阻电热合金材料弥散强化技术研究综述[J]. 电工材料, 2019(1):31-34.
|
[3] |
PARK D J, KIM H G, PARK J Y, et al. A study of the oxidation of FeCrAl alloy in pressurized water and high-temperature steam environment[J]. Corrosion Science, 2015,94:459-465.
|
[4] |
EJENSTAM J, THUVANDE M, OLSSO P, et al. Microstructural stability of Fe-Cr-Al alloys at 450-550 C[J]. Journal of Nuclear Materials, 2015,457:291-297.
|
[5] |
王晓军, 刘春振, 夏天东, 等. 电热合金扁带材的组织及夹杂物分析[J]. 兰州理工大学学报, 2014,40(2):14-17.
|
[6] |
LIU F, GOTLIND H, SVENSSO J, et al. Early stages of the oxidation of a FeCrAlRE alloy (Kanthal AF) at 900 C: A detailed microstructural investigation[J]. Corrosion Science, 2008,50(8):2272-2281.
|
[7] |
胡春霞, 王晓军, 王传玉, 等. 国内Cr20Ni80电热合金组织及性能对比研究[J]. 金属功能材料, 2010,17(3):42-46.
|
[8] |
MROWEC S, GRZESIK Z, RAJCHEL B, et al. The influence of aliovalent impurities on the oxidation kinetics of nickel at high temperatures[J]. Journal of Physics and Chemistry of Solids, 2005,66(1):115-120.
|
[9] |
阚亚威. 20CrNiMo钢联动轴寿命测试断裂原因分析[J]. 金属加工(热加工), 2021(4):83-84.
|
[10] |
HE Y, LIU J, HAN Z, et al. Phase transformation and precipitation during solidification of FeCrAl alloy for automobile exhaust gas purifying systems[J]. Journal of Alloys and Compounds, 2017,714:251-257.
|
[11] |
BRAMFITT B L. The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron[J]. Metallurgical Transactions, 1970(1):1987-1995.
|
[12] |
ITOH Y, TAKAO S, OKAJIMA T, et al. Effects of alloying elements and inoculators on refining of solidification structures of type 430 stainless steel[J]. Tetsu-to-Hagané, 1980,66(6):710-716.
|
[13] |
TAKEUCHI H, MORI H, IKEHARA Y, et al. The effects of electromagnetic stirring on cast structure of continuously cast SUS 430 stainless steel slabs[J]. Tetsu-to-Hagané, 1980,66(6):638-646.
|
[14] |
WILSON F G, GLADMAN T. Aluminium nitride in steel[J]. International Materials Reviews, 1988,33(1):221-286.
|
[15] |
MASUYAMA F. History of power plants and progress in heat resistant steels[J]. ISIJ International, 2001,41(6):612-625.
|
[16] |
袁慎铁, 赖朝彬, 陈英俊, 等. 含铌、钒、钛EQ47海洋平台用钢的高温塑性研究[J]. 有色金属科学与工程, 2014,5(2):52-56.
|
[17] |
贾丽慧, 李永亮. Nb、Ti微合金元素对高强结构钢Q690D冲击韧性的影响[J]. 有色金属科学与工程, 2020,11(1):34-38.
|
[18] |
韩志彪, 刘建华, 何杨. Ti处理FeCrAl不锈钢的凝固组织和夹杂物[J]. 钢铁钒钛, 2016,37(2):125-132.
|
[19] |
LIU W J, JONAS J J. Nucleation kinetics of Ti carbonitride in microalloyed austenite[J]. Metallurgical Transactions A, 1989,20:689-697.
|
[20] |
KUNISHIGE K, NAGAO N. Sterngthening and toughening of hot-direct-rolled steels by addition of a small amount of titanium[J]. ISIJ International, 1989,29(11):940-946.
|
[21] |
WANG Q, CHENG G. Metallurgy development of Ti-stabilized stainless steel[J]. Chinese Journal of Engineering, 2021,43(11):1447-1458.
|
[22] |
WANJARA P, BROCHU M, JAHAZI M. Electron beam freeforming of stainless steel using solid wire feed[J]. Materials & Design, 2007,28(8):2278-2286.
|
[23] |
DS S, AV K, PG J. On the role of non-metallic inclusions in the nucleation of acicular ferrite in steels[J]. ISIJ International, 2009,49(7):1063-1074.
|
[24] |
赖朝彬, 赵青松, 谭秀珍, 等. 晶内铁素体及其组织控制技术研究概况[J]. 有色金属科学与工程, 2014,5(6):53-60.
|
[25] |
武佳妮, 李维娟, 庞启航, 等. 稀土元素对大线能量焊接用钢的组织性能影响研究现状与展望[J]. 辽宁科技大学学报, 2019,42(1):13-21.
|
[26] |
朱健, 黄海友, 谢建新. 近年稀土钢研究进展与加速研发新思路[J]. 钢铁研究学报, 2017,29(7):513-529.
|
[27] |
张静, 马宏博, 张继, 等. 钇含量对铝脱氧含钛不锈钢中夹杂物的影响[J]. 钢铁, 2022,57(9):82-94.
|
[28] |
谢胜涛, 邵书东, 亓海燕, 等. 稀土元素对430铁素体不锈钢组织和性能的影响[J]. 中国冶金, 2022,32(6):94-100.
|
[29] |
钟灵强, 汪志刚, 陈荣春, 等. 稀土在汽车用先进高强钢中的研究现状[J]. 有色金属科学与工程, 2020,11(6):114-123.
|
[30] |
任万青, 徐掌印. 稀土元素对高铝钢夹杂物的影响[J]. 中国金属通报, 2021(2):147-148.
|
[31] |
刘晓, 马利飞, 李运刚, 等. 稀土22Cr型双相不锈钢组织及力学性能研究[J]. 稀土, 2017,38(4):7-14.
|
[32] |
马明玉, 周娜, 龚坚, 等. Ce和W对444铁素体不锈钢耐点蚀性的影响[J]. 中国冶金, 2022,32(6):79-86.
|
[33] |
王帅, 胡锋, 李德发, 等. TiN对高强度耐磨钢韧性的影响及其机制分析[J]. 中国冶金, 2021,31(7):38-45.
|
[34] |
白慧怡. Ti对铁素体钢凝固组织及夹杂物的影响[D]. 呼和浩特:内蒙古科技大学, 2019.
|
[35] |
YA W, SHAN Y Y, YANG K. Influence of TiN inclusions on the cleavage fracture behavior of low-carbon microalloyed steels[J]. Metallurgical and Materials Transactions A, 2007,38:1211-1222.
|
[36] |
翟俊, 郎炜昀, 杨永杰. 不锈钢典型夹杂物在轧制过程的衍变分析[J]. 中国冶金, 2023,33(1):123-130.
|
[37] |
吴建中, 杨文晟, 郭汉杰, 等. DH36高强度船板钢综合强化机理[J]. 有色金属科学与工程, 2017,8(4):19-25.
|
[38] |
LEBAN M B, TISU R. The effect of TiN inclusions and deformation-induced martensite on the corrosion properties of AISI 321 stainless steel[J]. Engineering Failure Analysis, 2013,33:430-438.
|
[39] |
YIN X, SUN Y, YANG Y, et al. Formation of inclusions in Ti-stabilized 17Cr austenitic stainless steel[J]. Metallurgical and Materials Transactions B, 2016,47:3274-3284.
|
[1] | ZHONG Caini, CHEN Zheqin, LU Yanhua, LIU Jiaming, XIA Shubiao. A study on the synthesis and electrochemical properties of CuFe2O4 cubes as anode material for lithium-ion batteries[J]. Nonferrous Metals Science and Engineering, 2020, 11(3): 59-64. DOI: 10.13264/j.cnki.ysjskx.2020.03.008 |
[2] | LIU Zhijun, PENG Wanwan, LI Zhifeng, WANG Chunxiang, ZHANG Qian, ZHONG Shengwen. Effect of niobium doping on the electrochemical performance of nickel-based cathode materials[J]. Nonferrous Metals Science and Engineering, 2020, 11(2): 89-96. DOI: 10.13264/j.cnki.ysjskx.2020.02.013 |
[3] | LI Tingting, ZHONG Shengwen, ZHOU Miaomiao, HUANG Jili. Research on P2-type layered cathode materials for sodium-ion batteries[J]. Nonferrous Metals Science and Engineering, 2020, 11(2): 82-88. DOI: 10.13264/j.cnki.ysjskx.2020.02.012 |
[4] | LAI Jianghong, ZHONG Shengwen, GUO Jinkang, LYU Qingwen, LUO Chuiyi, LI Dong. Synthesis and characterization of LiNi1/3Co1/3Mn1/3O2 cathode materials[J]. Nonferrous Metals Science and Engineering, 2017, 8(4): 68-72. DOI: 10.13264/j.cnki.ysjskx.2017.04.012 |
[5] | LV Qingwen, YIN Congling, ZHONG Shengwen, DING Nengwen, LAI Jianghong, LUO Chuiyi, FAN Fengsong. Synthesis and characterization of LiNi0.6Co0.1Mn0.3O2 cathode materials[J]. Nonferrous Metals Science and Engineering, 2016, 7(4): 50-54. DOI: 10.13264/j.cnki.ysjskx.2016.04.009 |
[6] | CHEN Jun, MEI Wenjie, ZENG Min, GUO Jinkang, LIU Defang, ZHONG Shengwen. Synthesis and performance research of carboxyl substituted nickel phthalocyanine as cathode materials for lithium ion batteries[J]. Nonferrous Metals Science and Engineering, 2015, 6(5): 45-51. DOI: 10.13264/j.cnki.ysjskx.2015.05.009 |
[7] | HU Wei, ZHONG Shengwen, HUANG Bing. Optimizing electrochemical properties in Li-rich Mn-based cathode material[J]. Nonferrous Metals Science and Engineering, 2014, 5(4): 32-36. DOI: 10.13264/j.cnki.ysjskx.2014.04.007 |
[8] | ZHONG Sheng-wen, ZHONG Feng-di, ZHANG Qian. Synthesis and Al-doping properties of lithium-ion cathode materials LiNi0.5Mn0.3Co0.2O2[J]. Nonferrous Metals Science and Engineering, 2013, 4(4): 11-16. DOI: 10.13264/j.cnki.ysjskx.2013.04.002 |
[9] | SONG Jin-yang, YE Hong-qi, DONG Hong, ZHOU Wan-zhu, DU Yu-min, HAO Meng-qiu, QIN Tao. Mg-doping and electrochemical properties of Li (Ni1/3Co1/3Mn1/3) O2 cathode material[J]. Nonferrous Metals Science and Engineering, 2013, 4(3): 30-33. DOI: 10.13264/j.cnki.ysjskx.2013.03.001 |
[10] | ZHANG Sheng-wen, WANG Yu′e, ZHANG Qian, QIAO Xiao-ni. Synthesis and Electrochemical Properties of LiNi0.5Mn0.5O2 as Cathode Material for AA Lithium Ion Batteries[J]. Nonferrous Metals Science and Engineering, 2010, 1(02): 11-15. DOI: 10.13264/j.cnki.ysjskx.2010.06.016 |