Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
SONG Jin-yang, YE Hong-qi, DONG Hong, ZHOU Wan-zhu, DU Yu-min, HAO Meng-qiu, QIN Tao. Mg-doping and electrochemical properties of Li (Ni1/3Co1/3Mn1/3) O2 cathode material[J]. Nonferrous Metals Science and Engineering, 2013, 4(3): 30-33. DOI: 10.13264/j.cnki.ysjskx.2013.03.001
Citation: SONG Jin-yang, YE Hong-qi, DONG Hong, ZHOU Wan-zhu, DU Yu-min, HAO Meng-qiu, QIN Tao. Mg-doping and electrochemical properties of Li (Ni1/3Co1/3Mn1/3) O2 cathode material[J]. Nonferrous Metals Science and Engineering, 2013, 4(3): 30-33. DOI: 10.13264/j.cnki.ysjskx.2013.03.001

Mg-doping and electrochemical properties of Li (Ni1/3Co1/3Mn1/3) O2 cathode material

More Information
  • Received Date: March 13, 2013
  • Published Date: June 29, 2013
  • Hydroxide coprecipitation method was used to dope Mg to the precursor to improve the cycle performance of LiNi1/3Co1/3Mn1/3O2 cathode materials. The cathode materials were synthesized by mixing the precursor with lithium salt, ball milling and high temperature calcination. The doped and undoped cathode materials were compared by SEM, XRD and electrochemical Testing respectively. The results showed that both the doped and undoped cathode materials were standard α-NaFeO2 layered structures with no obvious changes in particle sizes. The initial specific discharge capacity were 138.2 and 145.3 mAh/g for the cathode materials doped with 0.03 Mg and the undoped cathode materials. The specific discharge capacities were 131.1 and 119.5mAh/g separately after 50 cycles. The results indicated the cycle performance increased notably after doping Mg though the initial specific discharge capacity decreased slightly.
  • [1]
    Ohzuku T, Makimura Y. Layered lithium insertion material of LiNi1/3Co1/3Mn1/3O2 for lithium-ion batteries[J]. Chem Lett, 2001(7):642-643.
    [2]
    Shaju K M, Subba G V, Chowdari B V. Performance of layered as LiNi1/3Co1/3Mn1/3O2 cathode for Li-ion batteries[J]. Electrochim Acta, 2002, 48: 145-151. doi: 10.1016/S0013-4686(02)00593-5
    [3]
    XIANG Jiang-feng, CHANG Cai-xian, ZHANG Feng, et al. Rheological phase synthesis and electrochemical properties of mg-doped LiNi0.8Co0.2O2 cathode materials for lithium-ion battery[J].Journal of The Electrochemical Society, 2008, 155(7):520-525.
    [4]
    DING Yan-huai, ZHANG Ping, Long Zhi-lin, et al. Morphology and electrochemical properties of Al doped LiNi1/3Co1/3Mn1/3O2 nanofibers prepared by electrospinning[J].Journal of Alloys and Compounds, 2009, 487(1/2):507-510.
    [5]
    肖新颜, 汪冬.Ti掺杂对正极材料LiNi1/3Co1/3Mn1/3O2结构和电化学性能的影响[J].华南理工大学学报:自然科学版, 2012, 40(1):1-7.
    [6]
    李节宾, 徐友龙, 熊礼龙, 等.纳米MgO掺杂改善LiNi1/3Co1/3Mn1/3O2正极材料[J].物理化学学报, 2011, 27(11):2593-2599.
    [7]
    李义兵, 陈白珍, 徐徽, 等Li (Mn1/3Ni1/3Co1/3)1-yMyO2(M=Al, Mg, Ti)正极材料的制备及性能[J].中国有色金属学报, 2006, 16(8):1474-1479. http://cn.bing.com/academic/profile?id=1590948619&encoded=0&v=paper_preview&mkt=zh-cn
    [8]
    廖力, 王先友, 罗旭芳, 等Li (Ni1/3Co1/3Mn1/3)1-2xMgxAlxO2的合成与电化学性能[J].电源技术, 2007, 31(1)25-29.
    [9]
    Deng C, Zhang S, Fu B, et al. Synthetic optimization of nanostructured Li[Ni1/3Mn1/3Co1/3]O2 cathode material prepared by hydroxide coprecipitation at 273 K[J].Journal of Alloys and Compounds, 2010, 496(1/2):521-527.
    [10]
    TANG Ze-xun, GAO De-shu, CHEN Ping, et al. Novel-shaped LiNi1/3Co1/3Mn1/3O2 prepared by a hydroxide coprecipitation method[J].Pure and Applied Chemistry, 2008, 80(11):2537-2542.
    [11]
    Xu K, Ding M S, Zhang S S, et al. An attempt to formulate nonflammable lithiumion electrolytes with alkyl phosphates and phosphazenes[J]. Journal of The Electrochemical Society, 2002, 149(5): 622-626. doi: 10.1149/1.1467946
    [12]
    Watanable M, Tokuda H, Muto S. Anionic effect on ion transport properties in network polyether electrolytes[J]. Electrochimica Acta, 2001, 46(10/11): 1487-1491. https://www.researchgate.net/publication/244152030_Anionic_effect_on_ion_transport_properties_in_network_polyether_electrolytes?_sg=8_Snw7cr44TCvQR7blxnTVGQ8hl8t8_9WwPt3uaYi07ZNde_PhT3Tms-iYrNbBASdQhru-58YSCZdicwChiPlA
    [13]
    杨平.基于镍钴锰前驱体的锂离子电池正极材料Li[Ni1/3Mn1/3Co1/3]O2制备与改性研究[D].长沙:中南大学, 2009:79-80. http://cdmd.cnki.com.cn/Article/CDMD-10533-1011180370.htm
    [14]
    Juliell C, Nazri G A, Rougle A. Electrochemical performances of layered LiM1-yM'yO2(M=Ni, Co;M'=Mg, Al, B) oxides in lithium batteries[J].Physics and Chemistry of Solids, 2000, 135(1/4):121-130.
    [15]
    王希敏, 王先友, 罗旭芳, 等.锂离子电池正极材料LiCo1/3Ni1/3Mn1/3O2[J].化学进展, 2006, 18 (12): 1720-1724.
  • Related Articles

    [1]LIU Hangchen, CHEN Haiting, LIU Ruohan, ZHAO Pengbo, ZHAO Zhipeng, LIU Junqi, HU Hao. First-principles design of cation-doped H-Nb2O5 negative electrode material and its electrochemical performance investigation[J]. Nonferrous Metals Science and Engineering, 2024, 15(5): 732-739. DOI: 10.13264/j.cnki.ysjskx.2024.05.013
    [2]LIU Zhiliang, LI Xiaolin, LEI Chao, LI Dong, WANG Chunxiang, CHEN Jingbo, ZHONG Shengwen. Li-rich manganese layered cathode materials doped with W[J]. Nonferrous Metals Science and Engineering, 2020, 11(6): 57-63. DOI: 10.13264/j.cnki.ysjskx.2020.06.008
    [3]LIU Zhijun, PENG Wanwan, LI Zhifeng, WANG Chunxiang, ZHANG Qian, ZHONG Shengwen. Effect of niobium doping on the electrochemical performance of nickel-based cathode materials[J]. Nonferrous Metals Science and Engineering, 2020, 11(2): 89-96. DOI: 10.13264/j.cnki.ysjskx.2020.02.013
    [4]LUO Linshan, LIU Wenwen, WEN Xiaoqiang, ZHANG Fan, ZHOU Xinhua, GUO Chunping, ZHOU Youchi, PU Jian. Effect of La doping on the structure and electrochemical properties of layered Li-rich Mn-based oxide cathode materials[J]. Nonferrous Metals Science and Engineering, 2019, 10(3): 104-110. DOI: 10.13264/j.cnki.ysjskx.2019.03.018
    [5]LAI Jianghong, ZHONG Shengwen, GUO Jinkang, LYU Qingwen, LUO Chuiyi, LI Dong. Synthesis and characterization of LiNi1/3Co1/3Mn1/3O2 cathode materials[J]. Nonferrous Metals Science and Engineering, 2017, 8(4): 68-72. DOI: 10.13264/j.cnki.ysjskx.2017.04.012
    [6]LIU Xilin, ZhONG Shengwen, MEI Wenjie, CHEN Peng, JIN Zhu, WANG Chunxiang. Synthesis and properties of Li1.07(Ni0.4Mn0.531-xAlxO2 as cathode materials for lithium ion batteries[J]. Nonferrous Metals Science and Engineering, 2015, 6(5): 63-68. DOI: 10.13264/j.cnki.ysjskx.2015.05.012
    [7]Yin Zhuang, Zhou Hongwei, Ding Xianan, Yan Gang, Xin Qin, Wang Xindong. Synthesis and performance study of one-dimensional LiNi1/3Co1/3Mn1/3O2 nanofiber prepared by electrospinning[J]. Nonferrous Metals Science and Engineering, 2015, 6(2): 32-36. DOI: 10.13264/j.cnki.ysjskx.2015.02.006
    [8]ZHONG Sheng-wen, ZHONG Feng-di, ZHANG Qian. Synthesis and Al-doping properties of lithium-ion cathode materials LiNi0.5Mn0.3Co0.2O2[J]. Nonferrous Metals Science and Engineering, 2013, 4(4): 11-16. DOI: 10.13264/j.cnki.ysjskx.2013.04.002
    [9]ZHONG Sheng-wen, FENG Zhi-fang, XIE Min. Synthesis and Performances of Li (Mn1/3Ni1/3Co1/3)O2 as the AA Type of Lithium-ion Batteries by Melting Salt[J]. Nonferrous Metals Science and Engineering, 2011, 2(1): 9-13.
    [10]LIAO Chun-fa, CHEN Hui-huang, CHEN Zi-ping. Influence of Doping Rare Earth on the LiCoO2 as Lithium-ion Positive Material[J]. Nonferrous Metals Science and Engineering, 2004, 18(2): 33-37.

Catalog

    Article Metrics

    Article views (94) PDF downloads (2) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return