Citation: | CHEN Guofang, WEI Hao. Tunnel gas risk assessment based on EW-AHP and unascertained measurement theory[J]. Nonferrous Metals Science and Engineering, 2021, 12(5): 89-95. DOI: 10.13264/j.cnki.ysjskx.2021.05.011 |
[1] |
王梦恕. 中国铁路、隧道与地下空间发展概况[J]. 隧道建设, 2010, 30(4): 351-364. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201004002.htm
|
[2] |
赵勇, 田四明, 孙毅. 中国高速铁路隧道的发展及规划[J]. 隧道建设, 2017, 37(1): 11-17. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201701002.htm
|
[3] |
汪跃飞. 黄草隧道高瓦斯施工通风及风险防控应用研究[J]. 科技与创新, 2020(23): 51-53. https://www.cnki.com.cn/Article/CJFDTOTAL-KJYX202023020.htm
|
[4] |
陈鹏. 瓦斯隧道施工危险性评价研究[J]. 黑龙江交通科技, 2020, 43(7): 165-166. doi: 10.3969/j.issn.1008-3383.2020.07.101
|
[5] |
陆瑜. 含煤公路隧道施工瓦斯突出安全风险评估[J]. 路基工程, 2019(6): 218-222. https://www.cnki.com.cn/Article/CJFDTOTAL-LJGC201906044.htm
|
[6] |
张艳涛, 朱宝合, 高强, 等. 基于AHP的公路瓦斯隧道施工风险影响因素分析[J]. 采矿技术, 2020, 20(1): 115-118. doi: 10.3969/j.issn.1671-2900.2020.01.033
|
[7] |
陈飞, 郭顺, 熊如宗, 等. 基于层次分析法的地质灾害危险性评价研究[J]. 有色金属科学与工程, 2018, 9(5): 54-60. http://ysjskx.paperopen.com/oa/darticle.aspx?type=view&id=201805010
|
[8] |
HOSCAN O, CETINYOKUS S. Determination of emergency assembly point for industrial accidents with AHP analysis[J]. Journal of Loss Prevention in the Process Industries, 2021, 69(prepublish): 104386.
|
[9] |
蒋晓槟, 李博, 薛亚东. 基于蒙德法的穿煤层隧道瓦斯风险评估[J]. 地下空间与工程学报, 2012, 8(6): 1292-1295. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201206029.htm
|
[10] |
熊建明, 陈沅江, 刘波, 等. 瓦斯隧道施工期风险等级的FDA法评价[J]. 重庆交通大学学报(自然科学版), 2017, 36(2): 17-23. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201702004.htm
|
[11] |
黄仁东, 张小军. 基于熵权物元可拓模型的隧道瓦斯等级评价[J]. 中国安全科学学报, 2012, 22(4): 77-82. doi: 10.3969/j.issn.1003-3033.2012.04.014
|
[12] |
张贤平, 杨斌清, 向燕. 基于未确知测度模型的稀土原地浸矿地下水污染风险评价[J]. 有色金属科学与工程, 2018, 9(6): 81-88. http://ysjskx.paperopen.com/oa/darticle.aspx?type=view&id=201806013
|
[13] |
翟强, 顾伟红. 基于EW-AHP和未确知测度理论的隧道坍塌风险评价[J]. 安全与环境工程, 2020, 27(5): 92-97.
|
[14] |
苏生瑞, 周阳, 周泽华, 等. 基于EW-AHP和未确知测度理论的崩塌危险性评价[J]. 工程地质学报, 2019, 27(3): 577-584. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201903016.htm
|
[15] |
KAUFMANN M, EFFENBERGER I, HUBER M F. Measurement uncertainty assessment for virtual assembly[J]. Journal of Sensors and Sensor Systems, 2021, 10(1): 28-36.
|
[16] |
YANG L, ZHANG X Y, XU W H, et al. Multi-granulation Rough Sets and Uncertainty Measurement for Multi-source Fuzzy Information System[J]. International Journal of Fuzzy Systems, 2019, 21(5): 1919-1937. doi: 10.1007/s40815-019-00667-1
|
[17] |
王凤菲, 王恩茂, 徐同启. 基于组合赋权-未确知测度理论的地铁隧道围岩质量评价[J]. 铁道标准设计, 2019, 63(6): 129-134. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201906028.htm
|
[18] |
朱玉娟, 王宏辉. 基于改进熵权-未确知测度理论的在役混凝土梁桥安全性评价[J]. 价值工程, 2019, 38(30): 180-182. https://www.cnki.com.cn/Article/CJFDTOTAL-JZGC201930078.htm
|
[19] |
FORDONI S, RASHID M. Multiple selections of kashmir tunnel risk by fuzzy multiple-criteria decision analysis[J]. Journal of Bioinformatics and Intelligent Control, 2015, 4(1): 2326-7496. http://www.ingentaconnect.com/contentone/asp/jbic/2015/00000004/00000001/art00011
|
[20] |
李文龙, 李慧民, 孟海, 等. 基于熵权-未确知测度理论的装配式建筑施工安全风险评估[J]. 西安建筑科技大学学报(自然科学版), 2019, 51(3): 369-374. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJZ201903010.htm
|
[21] |
何美丽, 刘霁, 刘浪, 等. 隧道坍方风险评价的未确知测度模型及工程应用[J]. 中南大学学报(自然科学版), 2012, 43(9): 3665-3671. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201209051.htm
|
[22] |
程乾生. 属性识别理论模型及其应用[J]. 北京大学学报(自然科学版), 1997(1): 14-22. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ701.001.htm
|
[23] |
肖鹏, 丁毅, 李树刚. 基于未确知测度的矿井瓦斯防治管理体系评价[J]. 中国安全科学学报, 2017, 27(1): 98-103. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201701019.htm
|
[24] |
孙庆刚. 中国煤矿瓦斯灾害现状与防治对策研究[J]. 中国煤炭, 2014, 40(3): 116-119. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGME201403032.htm
|
[25] |
文畅平. 隧道瓦斯突出危险性评价的属性识别模型与实例[J]. 煤炭学报, 2011, 36(8): 1322-1328. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201108018.htm
|
[26] |
高杨, 杨昌宇, 郑伟. 铁路瓦斯隧道分类分级标准探讨[J]. 隧道建设, 2017, 37(11): 1366-1372. doi: 10.3973/j.issn.2096-4498.2017.11.002
|
[1] | FAN Wenxin, GAO Yang, WANG Pengfei, CHEN Yan, YUAN Xia, PENG Lijun, FU Yabo, ZHANG Zhongtao. Effect of Ni and Si additions on the microstructure and mechanical properties of Cu-7Sn alloy[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 85-95. DOI: 10.13264/j.cnki.ysjskx.2025.01.010 |
[2] | CHEN Wenfei, OUYANG Shaobo, LAN Yuan, XIONG Daoling, MA Chongchong, YANG Jiaqi, ZOU Laixi, SHU Qing. Experiment on the swelling properties and semi-coke thermogravimetric analysis of waste tires[J]. Nonferrous Metals Science and Engineering, 2018, 9(6): 31-37. DOI: 10.13264/j.cnki.ysjskx.2018.06.005 |
[3] | HU Min, CHEN Min, LUO Yan, LIU Xiaoqiu. Effect of thermal spray coatings of WC-Co on the stress in jaw crusher tooth plate[J]. Nonferrous Metals Science and Engineering, 2016, 7(6): 83-87. DOI: 10.13264/j.cnki.ysjskx.2016.06.0014 |
[4] | ZHANG Lina, YUAN Zhangfu, LI Linshan, WU Yan, SUI Dianpeng. Model research of thermal decomposition kinetics of limestone[J]. Nonferrous Metals Science and Engineering, 2016, 7(6): 13-18. DOI: 10.13264/j.cnki.ysjskx.2016.06.003 |
[5] | DUAN Shengchao, MA Jianjun, GUO Hanjie, SHI Xiao, MAO Yu. Thermodynamic analysis and kinetics mechanism for direct nitridation reaction[J]. Nonferrous Metals Science and Engineering, 2016, 7(4): 14-21. DOI: 10.13264/j.cnki.ysjskx.2016.04.003 |
[6] | RAO Yunzhang, ZHANG Xueyan. Based on logistic regression model to determine the weight fuzzy comprehensive evaluation method in the application of the slope stability analysis[J]. Nonferrous Metals Science and Engineering, 2015, 6(6): 111-115. DOI: 10.13264/j.cnki.ysjskx.2015.06.020 |
[7] | LEI Facheng, ZHAO Yuncai. Feasibility analysis of selecting gearbox bearings indenter based on ANSYS[J]. Nonferrous Metals Science and Engineering, 2015, 6(1): 116-120. DOI: 10.13264/j.cnki.ysjskx.2015.01.022 |
[8] | LIAO Lile, GUO Xueyi, WANG Qinmeng, TIAN Qinghua, ZHANG Yongzhu. Performance analysis of oxygen bottom blowing copper smelting process using METSIM[J]. Nonferrous Metals Science and Engineering, 2014, 5(5): 49-55. DOI: 10.13264/j.cnki.ysjskx.2014.05.009 |
[9] | XIONG Li, YE Xue-jun, HU Cheng, LIU Zi-shuai, QIU Zhen-zhong. Sorting effects and mechanism of SA-3 on copper bismuth sulphide[J]. Nonferrous Metals Science and Engineering, 2011, 2(6): 83-85. |
[10] | ZHAO Yun-cai, LEI Fa-cheng. Strength Analysis of Ceramic Filter's Rotary Vacuum Based on ANSYS[J]. Nonferrous Metals Science and Engineering, 2009, 23(3): 42-45. |
1. |
邓越,王婷婷,孙清鹏,孙金峰,张少飞. 三维阵列CoO_x/CeO_2双功能催化剂的制备及其电解水性能研究. 铜业工程. 2025(01): 95-103 .
![]() | |
2. |
薛天雨,黄仲,谷昊辉,张海军. 高熵合金纳米电催化剂的合成. 稀有金属. 2024(01): 90-104 .
![]() | |
3. |
裴启飞,郭孟伟,邵伟春,王恩泽,高明远,张启波. 锌电积体系Zn-MnO_2同槽电解电化学分析. 有色金属科学与工程. 2024(03): 322-331 .
![]() | |
4. |
于巧玲,刘成宝,曹一达,郑磊之,陈丰,钱君超,邱永斌,孟宪荣,陈志刚. SnO_2QDs-g-C_3N_4/C的合成及其光催化降解四环素研究. 稀有金属. 2024(08): 1144-1153 .
![]() | |
5. |
朱得智,徐京城. FeS@NiMoO_4异质结构筑及电催化析氢性能研究. 有色金属材料与工程. 2024(06): 60-67+74 .
![]() | |
6. |
侯振宇,苑慧萍,刘彧儒,沈浩,李志念,蒋利军. 化学计量比对钇-镍基储氢合金结构和储氢性能的影响. 稀有金属. 2024(12): 1671-1680 .
![]() | |
7. |
余德和,左川,高勇,周世平,卢军,刘锋. 电解水析氢贵金属电催化剂的研究进展. 稀有金属. 2023(11): 1573-1586 .
![]() | |
8. |
王诗雯,鲁杨帆,丁朝,李建波,陈玉安,谭军. Ti基催化剂改性Mg基储氢材料的研究进展. 稀有金属. 2023(12): 1642-1656 .
![]() |