Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
CHEN Guofang, WEI Hao. Tunnel gas risk assessment based on EW-AHP and unascertained measurement theory[J]. Nonferrous Metals Science and Engineering, 2021, 12(5): 89-95. DOI: 10.13264/j.cnki.ysjskx.2021.05.011
Citation: CHEN Guofang, WEI Hao. Tunnel gas risk assessment based on EW-AHP and unascertained measurement theory[J]. Nonferrous Metals Science and Engineering, 2021, 12(5): 89-95. DOI: 10.13264/j.cnki.ysjskx.2021.05.011

Tunnel gas risk assessment based on EW-AHP and unascertained measurement theory

More Information
  • Received Date: January 11, 2021
  • Published Date: October 30, 2021
  • In the construction of railway tunnel, many need to pass through the gas stratum so that the safety risk of construction is quite high. A railway tunnel gas risk assessment model based on the unascertained measurement theory was established to improve the accuracy of tunnel gas risk assessment. Yudu No.2 tunnel project of Xingquan railway was taken as a case study. Nine factors affecting gas risk were selected as evaluation indexes, and their grading standards were established. The weight calculated by AHP and entropy weight method was coupled into comprehensive weight by using the method of multiplication normalization, and then the comprehensive weight and the unascertained measure matrix of evaluation index were used to determine the multi index comprehensive measure evaluation vector. Finally the risk level of tunnel gas was determined according to the confidence recognition criteria. The results showed that: compared with the traditional evaluation model, this evaluation model could improve the accuracy of tunnel gas risk evaluation, and it was highly consistent with the actual construction situation, and could be used as an effective evaluation model for gas risk in similar tunnel projects.
  • [1]
    王梦恕. 中国铁路、隧道与地下空间发展概况[J]. 隧道建设, 2010, 30(4): 351-364. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201004002.htm
    [2]
    赵勇, 田四明, 孙毅. 中国高速铁路隧道的发展及规划[J]. 隧道建设, 2017, 37(1): 11-17. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201701002.htm
    [3]
    汪跃飞. 黄草隧道高瓦斯施工通风及风险防控应用研究[J]. 科技与创新, 2020(23): 51-53. https://www.cnki.com.cn/Article/CJFDTOTAL-KJYX202023020.htm
    [4]
    陈鹏. 瓦斯隧道施工危险性评价研究[J]. 黑龙江交通科技, 2020, 43(7): 165-166. doi: 10.3969/j.issn.1008-3383.2020.07.101
    [5]
    陆瑜. 含煤公路隧道施工瓦斯突出安全风险评估[J]. 路基工程, 2019(6): 218-222. https://www.cnki.com.cn/Article/CJFDTOTAL-LJGC201906044.htm
    [6]
    张艳涛, 朱宝合, 高强, 等. 基于AHP的公路瓦斯隧道施工风险影响因素分析[J]. 采矿技术, 2020, 20(1): 115-118. doi: 10.3969/j.issn.1671-2900.2020.01.033
    [7]
    陈飞, 郭顺, 熊如宗, 等. 基于层次分析法的地质灾害危险性评价研究[J]. 有色金属科学与工程, 2018, 9(5): 54-60. http://ysjskx.paperopen.com/oa/darticle.aspx?type=view&id=201805010
    [8]
    HOSCAN O, CETINYOKUS S. Determination of emergency assembly point for industrial accidents with AHP analysis[J]. Journal of Loss Prevention in the Process Industries, 2021, 69(prepublish): 104386.
    [9]
    蒋晓槟, 李博, 薛亚东. 基于蒙德法的穿煤层隧道瓦斯风险评估[J]. 地下空间与工程学报, 2012, 8(6): 1292-1295. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201206029.htm
    [10]
    熊建明, 陈沅江, 刘波, 等. 瓦斯隧道施工期风险等级的FDA法评价[J]. 重庆交通大学学报(自然科学版), 2017, 36(2): 17-23. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201702004.htm
    [11]
    黄仁东, 张小军. 基于熵权物元可拓模型的隧道瓦斯等级评价[J]. 中国安全科学学报, 2012, 22(4): 77-82. doi: 10.3969/j.issn.1003-3033.2012.04.014
    [12]
    张贤平, 杨斌清, 向燕. 基于未确知测度模型的稀土原地浸矿地下水污染风险评价[J]. 有色金属科学与工程, 2018, 9(6): 81-88. http://ysjskx.paperopen.com/oa/darticle.aspx?type=view&id=201806013
    [13]
    翟强, 顾伟红. 基于EW-AHP和未确知测度理论的隧道坍塌风险评价[J]. 安全与环境工程, 2020, 27(5): 92-97.
    [14]
    苏生瑞, 周阳, 周泽华, 等. 基于EW-AHP和未确知测度理论的崩塌危险性评价[J]. 工程地质学报, 2019, 27(3): 577-584. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201903016.htm
    [15]
    KAUFMANN M, EFFENBERGER I, HUBER M F. Measurement uncertainty assessment for virtual assembly[J]. Journal of Sensors and Sensor Systems, 2021, 10(1): 28-36.
    [16]
    YANG L, ZHANG X Y, XU W H, et al. Multi-granulation Rough Sets and Uncertainty Measurement for Multi-source Fuzzy Information System[J]. International Journal of Fuzzy Systems, 2019, 21(5): 1919-1937. doi: 10.1007/s40815-019-00667-1
    [17]
    王凤菲, 王恩茂, 徐同启. 基于组合赋权-未确知测度理论的地铁隧道围岩质量评价[J]. 铁道标准设计, 2019, 63(6): 129-134. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201906028.htm
    [18]
    朱玉娟, 王宏辉. 基于改进熵权-未确知测度理论的在役混凝土梁桥安全性评价[J]. 价值工程, 2019, 38(30): 180-182. https://www.cnki.com.cn/Article/CJFDTOTAL-JZGC201930078.htm
    [19]
    FORDONI S, RASHID M. Multiple selections of kashmir tunnel risk by fuzzy multiple-criteria decision analysis[J]. Journal of Bioinformatics and Intelligent Control, 2015, 4(1): 2326-7496. http://www.ingentaconnect.com/contentone/asp/jbic/2015/00000004/00000001/art00011
    [20]
    李文龙, 李慧民, 孟海, 等. 基于熵权-未确知测度理论的装配式建筑施工安全风险评估[J]. 西安建筑科技大学学报(自然科学版), 2019, 51(3): 369-374. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJZ201903010.htm
    [21]
    何美丽, 刘霁, 刘浪, 等. 隧道坍方风险评价的未确知测度模型及工程应用[J]. 中南大学学报(自然科学版), 2012, 43(9): 3665-3671. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201209051.htm
    [22]
    程乾生. 属性识别理论模型及其应用[J]. 北京大学学报(自然科学版), 1997(1): 14-22. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ701.001.htm
    [23]
    肖鹏, 丁毅, 李树刚. 基于未确知测度的矿井瓦斯防治管理体系评价[J]. 中国安全科学学报, 2017, 27(1): 98-103. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201701019.htm
    [24]
    孙庆刚. 中国煤矿瓦斯灾害现状与防治对策研究[J]. 中国煤炭, 2014, 40(3): 116-119. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGME201403032.htm
    [25]
    文畅平. 隧道瓦斯突出危险性评价的属性识别模型与实例[J]. 煤炭学报, 2011, 36(8): 1322-1328. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201108018.htm
    [26]
    高杨, 杨昌宇, 郑伟. 铁路瓦斯隧道分类分级标准探讨[J]. 隧道建设, 2017, 37(11): 1366-1372. doi: 10.3973/j.issn.2096-4498.2017.11.002
  • Related Articles

    [1]FAN Wenxin, GAO Yang, WANG Pengfei, CHEN Yan, YUAN Xia, PENG Lijun, FU Yabo, ZHANG Zhongtao. Effect of Ni and Si additions on the microstructure and mechanical properties of Cu-7Sn alloy[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 85-95. DOI: 10.13264/j.cnki.ysjskx.2025.01.010
    [2]CHEN Wenfei, OUYANG Shaobo, LAN Yuan, XIONG Daoling, MA Chongchong, YANG Jiaqi, ZOU Laixi, SHU Qing. Experiment on the swelling properties and semi-coke thermogravimetric analysis of waste tires[J]. Nonferrous Metals Science and Engineering, 2018, 9(6): 31-37. DOI: 10.13264/j.cnki.ysjskx.2018.06.005
    [3]HU Min, CHEN Min, LUO Yan, LIU Xiaoqiu. Effect of thermal spray coatings of WC-Co on the stress in jaw crusher tooth plate[J]. Nonferrous Metals Science and Engineering, 2016, 7(6): 83-87. DOI: 10.13264/j.cnki.ysjskx.2016.06.0014
    [4]ZHANG Lina, YUAN Zhangfu, LI Linshan, WU Yan, SUI Dianpeng. Model research of thermal decomposition kinetics of limestone[J]. Nonferrous Metals Science and Engineering, 2016, 7(6): 13-18. DOI: 10.13264/j.cnki.ysjskx.2016.06.003
    [5]DUAN Shengchao, MA Jianjun, GUO Hanjie, SHI Xiao, MAO Yu. Thermodynamic analysis and kinetics mechanism for direct nitridation reaction[J]. Nonferrous Metals Science and Engineering, 2016, 7(4): 14-21. DOI: 10.13264/j.cnki.ysjskx.2016.04.003
    [6]RAO Yunzhang, ZHANG Xueyan. Based on logistic regression model to determine the weight fuzzy comprehensive evaluation method in the application of the slope stability analysis[J]. Nonferrous Metals Science and Engineering, 2015, 6(6): 111-115. DOI: 10.13264/j.cnki.ysjskx.2015.06.020
    [7]LEI Facheng, ZHAO Yuncai. Feasibility analysis of selecting gearbox bearings indenter based on ANSYS[J]. Nonferrous Metals Science and Engineering, 2015, 6(1): 116-120. DOI: 10.13264/j.cnki.ysjskx.2015.01.022
    [8]LIAO Lile, GUO Xueyi, WANG Qinmeng, TIAN Qinghua, ZHANG Yongzhu. Performance analysis of oxygen bottom blowing copper smelting process using METSIM[J]. Nonferrous Metals Science and Engineering, 2014, 5(5): 49-55. DOI: 10.13264/j.cnki.ysjskx.2014.05.009
    [9]XIONG Li, YE Xue-jun, HU Cheng, LIU Zi-shuai, QIU Zhen-zhong. Sorting effects and mechanism of SA-3 on copper bismuth sulphide[J]. Nonferrous Metals Science and Engineering, 2011, 2(6): 83-85.
    [10]ZHAO Yun-cai, LEI Fa-cheng. Strength Analysis of Ceramic Filter's Rotary Vacuum Based on ANSYS[J]. Nonferrous Metals Science and Engineering, 2009, 23(3): 42-45.
  • Cited by

    Periodical cited type(8)

    1. 邓越,王婷婷,孙清鹏,孙金峰,张少飞. 三维阵列CoO_x/CeO_2双功能催化剂的制备及其电解水性能研究. 铜业工程. 2025(01): 95-103 .
    2. 薛天雨,黄仲,谷昊辉,张海军. 高熵合金纳米电催化剂的合成. 稀有金属. 2024(01): 90-104 .
    3. 裴启飞,郭孟伟,邵伟春,王恩泽,高明远,张启波. 锌电积体系Zn-MnO_2同槽电解电化学分析. 有色金属科学与工程. 2024(03): 322-331 . 本站查看
    4. 于巧玲,刘成宝,曹一达,郑磊之,陈丰,钱君超,邱永斌,孟宪荣,陈志刚. SnO_2QDs-g-C_3N_4/C的合成及其光催化降解四环素研究. 稀有金属. 2024(08): 1144-1153 .
    5. 朱得智,徐京城. FeS@NiMoO_4异质结构筑及电催化析氢性能研究. 有色金属材料与工程. 2024(06): 60-67+74 .
    6. 侯振宇,苑慧萍,刘彧儒,沈浩,李志念,蒋利军. 化学计量比对钇-镍基储氢合金结构和储氢性能的影响. 稀有金属. 2024(12): 1671-1680 .
    7. 余德和,左川,高勇,周世平,卢军,刘锋. 电解水析氢贵金属电催化剂的研究进展. 稀有金属. 2023(11): 1573-1586 .
    8. 王诗雯,鲁杨帆,丁朝,李建波,陈玉安,谭军. Ti基催化剂改性Mg基储氢材料的研究进展. 稀有金属. 2023(12): 1642-1656 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (92) PDF downloads (1) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return