Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
DUAN Shengchao, MA Jianjun, GUO Hanjie, SHI Xiao, MAO Yu. Thermodynamic analysis and kinetics mechanism for direct nitridation reaction[J]. Nonferrous Metals Science and Engineering, 2016, 7(4): 14-21. DOI: 10.13264/j.cnki.ysjskx.2016.04.003
Citation: DUAN Shengchao, MA Jianjun, GUO Hanjie, SHI Xiao, MAO Yu. Thermodynamic analysis and kinetics mechanism for direct nitridation reaction[J]. Nonferrous Metals Science and Engineering, 2016, 7(4): 14-21. DOI: 10.13264/j.cnki.ysjskx.2016.04.003

Thermodynamic analysis and kinetics mechanism for direct nitridation reaction

More Information
  • Received Date: January 18, 2016
  • Published Date: August 30, 2016
  • The mechanism and chemical kinetics of nitridation reaction at different heating rates was investigated by thermogravimetry. It is found that there is an exothermic peak and an endothermic peak in the differential scanning calorimetry curve at 1 000~1 300 ℃ centigrade, which indicates that the mechanism has changed. The conversion rate of silicon nitride is significantly increased within 1 000 to 1 100 ℃, and it indicates temperature is the dominant factor affecting the conversion rate. Experiments results show that the restrictive step of nitridation reaction is composed of chemical reaction in early stage of reaction and the mixed-control of chemical reaction and intraparticle diffusion in the subsequent reaction; the apparent activation energy is kinetically calculated to be 404.5 kJ/mol, the frequency factor A=9.57×1015 min/s, the reaction order n=0.95, and mathematical expression of reaction rate equation is finally obtained.
  • [1]
    SHUKLA P P, LAWRENCE J. Fracture toughness modification by using a fibre laser treatment of a silicon nitride engineering ceramic[J]. Journal of Materials Science, 2010, 45(23): 6540-6541. doi: 10.1007/s10853-010-4743-6
    [2]
    [3]
    李金富,李康,李拥军,等. 工艺参数对自蔓燃制备氮化硅粉体的影响[J]. 硅酸盐通报,2007, 26(2): 252-255. http://www.cnki.com.cn/Article/CJFDTOTAL-GSYT200702007.htm
    [4]
    李亚伟,张忻,田海兵,等. 硅粉直接氮化反应合成氮化硅研究[J]. 硅酸盐通报, 2003, 22(1): 30-34. http://www.cnki.com.cn/Article/CJFDTOTAL-GSYT200301007.htm
    [5]
    王勇,沃银花,姚奎鸿,等. 流态床CVD 法纳米氮化硅粉体的制备[J]. 无机材料学报, 2006, 21(1): 41-45. http://www.cnki.com.cn/Article/CJFDTOTAL-WGCL200601007.htm
    [6]
    李虹,黄莉萍,蒋薪. 碳热还原法制备氮化硅粉体的反应过程分析[J]. 无机材料学报, 1996, 11(2): 241-246. http://www.cnki.com.cn/Article/CJFDTOTAL-WGCL602.007.htm
    [7]
    万小涵,张广清,JOHN SHARP,等. 高氮分压对碳热还原/氮化法合成氮化硅的影响[J]. 有色金属工程,2015, 5(4): 9-12. http://www.cnki.com.cn/Article/CJFDTOTAL-YOUS201504003.htm
    [8]
    马啸尘,尹洪峰,张军战,等. 以木屑为碳源制备氮化硅粉体的研究[J]. 耐火材料, 2015, 49(1): 31-35. http://www.cnki.com.cn/Article/CJFDTOTAL-LOCL201501009.htm
    [9]
    古亚军,曹迎楠,李发亮,等. 铁纳米颗粒催化氮化硅粉[J]. 硅酸盐学报, 2014, 42(12): 1585-1589. http://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201412019.htm
    [10]
    李勇,朱晓燕,王佳平,等. 反应烧结氮化硅–碳化硅复合材料的氮化机理[J]. 硅酸盐学报,2001, 39(3): 447-451. http://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201103014.htm
    [11]
    高梅,李勇,秦海霞,等. 闪速燃烧合成氮化硅铁的氮化机理[J]. 硅酸盐学报, 2015, 43(3): 358-362. http://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201503019.htm
    [12]
    李绍芬. 反应工程[M]. 3版. 北京: 化学工业出版社, 2013.
    [13]
    郭汉杰. 冶金物理化学[M]. 北京: 高等教育出版社, 2006.
    [14]
    杨福明,王立,尹少武,等. 硅粉常压直接氮化过程的非催化气固反应模型[J]. 北京科技大学学报,2013, 35(6): 785-792. http://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201306012.htm
    [15]
    KISSINGER H E. Reaction kinetics in differential thermal analysis[J]. Analytic Chemistry, 1957, 2(11): 1702-1704.
    [16]
    沈兴. 差热、热重分析与非等温固相反应动力学[M]. 北京: 冶金工业出版社, 1995.
    [17]
    STAVA V, SETAK J. Computer calculation of the mechanism and associated kinetic data using a non-isothermal integral method[J]. Journal of Thermal Analysis and Calorimetry, 1975, 8(3): 477-489. doi: 10.1007/BF01910127
  • Related Articles

    [1]ZHOU Wenwang, JIANG Chenxi, ZENG Danliang, WU Yibo, QIU Tingsheng, YU Wen. Study on preparation of MoSx@ZVI composite by carbothermal reduction synthesis and its treatment of acid orange G wastewater[J]. Nonferrous Metals Science and Engineering, 2023, 14(3): 407-415. DOI: 10.13264/j.cnki.ysjskx.2023.03.014
    [2]XIANG Zhongning, HE Qinchuan, WANG Yiqun, REN Lianggui. Synthesis and wave absorption properties of hollow SiC spherical nanoparticles[J]. Nonferrous Metals Science and Engineering, 2022, 13(1): 83-92. DOI: 10.13264/j.cnki.ysjskx.2022.01.011
    [3]HE Jiangfan, WU Peijia, GUANG Weixin, LI Xin, SHU Qing. Synthesis and selectivity of anode material La0.75Sr0.25Cr0.5Mn0.5O3-δ for solid oxide fuel cell[J]. Nonferrous Metals Science and Engineering, 2018, 9(5): 33-36, 48. DOI: 10.13264/j.cnki.ysjskx.2018.05.006
    [4]DONG Piaoping, XIE Xinrong, LIANG Fuyong, ZOU Zhenggang, WEN Herui. Synthesis and application of lanthanide-based metal-organic frameworks[J]. Nonferrous Metals Science and Engineering, 2016, 7(3): 137-150. DOI: 10.13264/j.cnki.ysjskx.2016.03.024
    [5]RAO Yunzhang, ZHANG Xueyan. Based on logistic regression model to determine the weight fuzzy comprehensive evaluation method in the application of the slope stability analysis[J]. Nonferrous Metals Science and Engineering, 2015, 6(6): 111-115. DOI: 10.13264/j.cnki.ysjskx.2015.06.020
    [6]GAO Jixing, GU Zhifeng, YANG Changshan, LUO Yanshen, TAN Yuhui, TANG Yunzhi. Synthesis, structures and properties of FeII, CoII - imidazolyl tetrazole compounds formed through in situ [2+3] synthesis[J]. Nonferrous Metals Science and Engineering, 2015, 6(5): 73-79. DOI: 10.13264/j.cnki.ysjskx.2015.05.014
    [7]FANG Wen, LI Jiade, YU Changlin. Application of rare earth to producing synthesis gas from the partial oxidation of methane[J]. Nonferrous Metals Science and Engineering, 2014, 5(6): 125-131. DOI: 10.13264/j.cnki.ysjskx.2014.06.022
    [8]CHAI Li-yuan, WANG Hai-tang, YOU Xiang-yu, WANG Qing-wei, SHU Yu-de. Thermodynamics equilibrium of M(Ⅱ)-S-H2O system[J]. Nonferrous Metals Science and Engineering, 2012, 3(5): 8-13. DOI: 10.13264/j.cnki.ysjskx.2012.05.020
    [9]YANG Yi-wen, CHEN Hui-zong. Catalytic Synthesis of N-amyl Acetate by RE Composite Solid Superacid SO42-/ZrO2- 2% Gd2O3[J]. Nonferrous Metals Science and Engineering, 2006, 20(2): 26-28.
    [10]LIAN Ping, LI Lei, YANG Yan-chao, WANG Ke-jun, LI Yong-xiu. Catalytic Synthesis of Sucrose Fatty Acid Ester with Rare Earth Solid Super Acid by Microwave Irradiation[J]. Nonferrous Metals Science and Engineering, 2005, 19(4): 36-39.

Catalog

    Article Metrics

    Article views (132) PDF downloads (19) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return