Citation: | DUAN Shengchao, MA Jianjun, GUO Hanjie, SHI Xiao, MAO Yu. Thermodynamic analysis and kinetics mechanism for direct nitridation reaction[J]. Nonferrous Metals Science and Engineering, 2016, 7(4): 14-21. DOI: 10.13264/j.cnki.ysjskx.2016.04.003 |
[1] |
SHUKLA P P, LAWRENCE J. Fracture toughness modification by using a fibre laser treatment of a silicon nitride engineering ceramic[J]. Journal of Materials Science, 2010, 45(23): 6540-6541. doi: 10.1007/s10853-010-4743-6
|
[2] |
鲁元,杨建锋,李京龙. 碳热还原-反应烧结法制备多孔氮化硅陶瓷[J]. 无机材料学报, 2013, 28(5): 469-473. http://www.baidu.com/link?url=GZ4-5b11H224VJz2TEhTN8QlI9bjSEyAbeRy4oPH38SuYaD-vUYRRpEsQEsxzQSx55mvAlgKHeBXMAPqQ2fIL64NVDEqjydIpR-EfMOwSOWP0aqh-jtj-fpQupfkROAHnUgHv8LF996e4G3HWJHPNKtUF9nMdGrV8xF5xydv3yeB-sKUfjsi1ZuYN8NsFE0FVoFPaTJqIjnhxJShvkmo5ooKOknWO33IHhTCaOyf5cshb1s-r76B0BtTRPiORf7jzvHrFV6IDgGCsb4X6ziXetybGa02rXlEZP1mUQVuTKKHWmbhzn06VMI9vlGZPwI0G1p3WxWMooBkvOdFzCxHeU88iLqUtR7Q_0bYF60lowHwO5t3aJsVh9f6dgvuDGtC20RBR8tRW6EaqAMBC1uHi7PhZNOeMYH_t_WG90P4WbYOklQEZ76xx3znopLFcLEBH0rg0uuwzjSkbZ4mm9VpGK&wd=&eqid=86998a3500032b1a00000005581019e0
|
[3] |
李金富,李康,李拥军,等. 工艺参数对自蔓燃制备氮化硅粉体的影响[J]. 硅酸盐通报,2007, 26(2): 252-255. http://www.cnki.com.cn/Article/CJFDTOTAL-GSYT200702007.htm
|
[4] |
李亚伟,张忻,田海兵,等. 硅粉直接氮化反应合成氮化硅研究[J]. 硅酸盐通报, 2003, 22(1): 30-34. http://www.cnki.com.cn/Article/CJFDTOTAL-GSYT200301007.htm
|
[5] |
王勇,沃银花,姚奎鸿,等. 流态床CVD 法纳米氮化硅粉体的制备[J]. 无机材料学报, 2006, 21(1): 41-45. http://www.cnki.com.cn/Article/CJFDTOTAL-WGCL200601007.htm
|
[6] |
李虹,黄莉萍,蒋薪. 碳热还原法制备氮化硅粉体的反应过程分析[J]. 无机材料学报, 1996, 11(2): 241-246. http://www.cnki.com.cn/Article/CJFDTOTAL-WGCL602.007.htm
|
[7] |
万小涵,张广清,JOHN SHARP,等. 高氮分压对碳热还原/氮化法合成氮化硅的影响[J]. 有色金属工程,2015, 5(4): 9-12. http://www.cnki.com.cn/Article/CJFDTOTAL-YOUS201504003.htm
|
[8] |
马啸尘,尹洪峰,张军战,等. 以木屑为碳源制备氮化硅粉体的研究[J]. 耐火材料, 2015, 49(1): 31-35. http://www.cnki.com.cn/Article/CJFDTOTAL-LOCL201501009.htm
|
[9] |
古亚军,曹迎楠,李发亮,等. 铁纳米颗粒催化氮化硅粉[J]. 硅酸盐学报, 2014, 42(12): 1585-1589. http://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201412019.htm
|
[10] |
李勇,朱晓燕,王佳平,等. 反应烧结氮化硅–碳化硅复合材料的氮化机理[J]. 硅酸盐学报,2001, 39(3): 447-451. http://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201103014.htm
|
[11] |
高梅,李勇,秦海霞,等. 闪速燃烧合成氮化硅铁的氮化机理[J]. 硅酸盐学报, 2015, 43(3): 358-362. http://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201503019.htm
|
[12] |
李绍芬. 反应工程[M]. 3版. 北京: 化学工业出版社, 2013.
|
[13] |
郭汉杰. 冶金物理化学[M]. 北京: 高等教育出版社, 2006.
|
[14] |
杨福明,王立,尹少武,等. 硅粉常压直接氮化过程的非催化气固反应模型[J]. 北京科技大学学报,2013, 35(6): 785-792. http://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201306012.htm
|
[15] |
KISSINGER H E. Reaction kinetics in differential thermal analysis[J]. Analytic Chemistry, 1957, 2(11): 1702-1704.
|
[16] |
沈兴. 差热、热重分析与非等温固相反应动力学[M]. 北京: 冶金工业出版社, 1995.
|
[17] |
STAVA V, SETAK J. Computer calculation of the mechanism and associated kinetic data using a non-isothermal integral method[J]. Journal of Thermal Analysis and Calorimetry, 1975, 8(3): 477-489. doi: 10.1007/BF01910127
|
[1] | ZHOU Wenwang, JIANG Chenxi, ZENG Danliang, WU Yibo, QIU Tingsheng, YU Wen. Study on preparation of MoSx@ZVI composite by carbothermal reduction synthesis and its treatment of acid orange G wastewater[J]. Nonferrous Metals Science and Engineering, 2023, 14(3): 407-415. DOI: 10.13264/j.cnki.ysjskx.2023.03.014 |
[2] | XIANG Zhongning, HE Qinchuan, WANG Yiqun, REN Lianggui. Synthesis and wave absorption properties of hollow SiC spherical nanoparticles[J]. Nonferrous Metals Science and Engineering, 2022, 13(1): 83-92. DOI: 10.13264/j.cnki.ysjskx.2022.01.011 |
[3] | HE Jiangfan, WU Peijia, GUANG Weixin, LI Xin, SHU Qing. Synthesis and selectivity of anode material La0.75Sr0.25Cr0.5Mn0.5O3-δ for solid oxide fuel cell[J]. Nonferrous Metals Science and Engineering, 2018, 9(5): 33-36, 48. DOI: 10.13264/j.cnki.ysjskx.2018.05.006 |
[4] | DONG Piaoping, XIE Xinrong, LIANG Fuyong, ZOU Zhenggang, WEN Herui. Synthesis and application of lanthanide-based metal-organic frameworks[J]. Nonferrous Metals Science and Engineering, 2016, 7(3): 137-150. DOI: 10.13264/j.cnki.ysjskx.2016.03.024 |
[5] | RAO Yunzhang, ZHANG Xueyan. Based on logistic regression model to determine the weight fuzzy comprehensive evaluation method in the application of the slope stability analysis[J]. Nonferrous Metals Science and Engineering, 2015, 6(6): 111-115. DOI: 10.13264/j.cnki.ysjskx.2015.06.020 |
[6] | GAO Jixing, GU Zhifeng, YANG Changshan, LUO Yanshen, TAN Yuhui, TANG Yunzhi. Synthesis, structures and properties of FeII, CoII - imidazolyl tetrazole compounds formed through in situ [2+3] synthesis[J]. Nonferrous Metals Science and Engineering, 2015, 6(5): 73-79. DOI: 10.13264/j.cnki.ysjskx.2015.05.014 |
[7] | FANG Wen, LI Jiade, YU Changlin. Application of rare earth to producing synthesis gas from the partial oxidation of methane[J]. Nonferrous Metals Science and Engineering, 2014, 5(6): 125-131. DOI: 10.13264/j.cnki.ysjskx.2014.06.022 |
[8] | CHAI Li-yuan, WANG Hai-tang, YOU Xiang-yu, WANG Qing-wei, SHU Yu-de. Thermodynamics equilibrium of M(Ⅱ)-S-H2O system[J]. Nonferrous Metals Science and Engineering, 2012, 3(5): 8-13. DOI: 10.13264/j.cnki.ysjskx.2012.05.020 |
[9] | YANG Yi-wen, CHEN Hui-zong. Catalytic Synthesis of N-amyl Acetate by RE Composite Solid Superacid SO42-/ZrO2- 2% Gd2O3[J]. Nonferrous Metals Science and Engineering, 2006, 20(2): 26-28. |
[10] | LIAN Ping, LI Lei, YANG Yan-chao, WANG Ke-jun, LI Yong-xiu. Catalytic Synthesis of Sucrose Fatty Acid Ester with Rare Earth Solid Super Acid by Microwave Irradiation[J]. Nonferrous Metals Science and Engineering, 2005, 19(4): 36-39. |