Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
FAN Wenxin, GAO Yang, WANG Pengfei, CHEN Yan, YUAN Xia, PENG Lijun, FU Yabo, ZHANG Zhongtao. Effect of Ni and Si additions on the microstructure and mechanical properties of Cu-7Sn alloy[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 85-95. DOI: 10.13264/j.cnki.ysjskx.2025.01.010
Citation: FAN Wenxin, GAO Yang, WANG Pengfei, CHEN Yan, YUAN Xia, PENG Lijun, FU Yabo, ZHANG Zhongtao. Effect of Ni and Si additions on the microstructure and mechanical properties of Cu-7Sn alloy[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 85-95. DOI: 10.13264/j.cnki.ysjskx.2025.01.010

Effect of Ni and Si additions on the microstructure and mechanical properties of Cu-7Sn alloy

More Information
  • Received Date: January 25, 2024
  • Revised Date: April 09, 2024
  • On the basis of the traditional solid solution strengthened Cu-7Sn alloy, the alloy phase diagram and thermodynamic calculation, combined with the first nature principle results for the design of the alloy composition and heat treatment regime, the physical phase composition of the alloy under different temperature conditions was investigated and experimentally characterized. By analyzing the phase compositions of the alloys with different compositions and temperatures, a new precipitation-strengthened Cu-7Sn-1Ni-0.4Si alloy was designed and prepared. The results show that the Cu-7Sn-1Ni-0.4Si alloy prepared by the melt casting method with Ni and Si elements as alloying elements according to the phase diagrams and first principle calculations can successfully introduce the δ-Ni2Si precipitation phase into the alloy after the solution treatment at 850 ℃ for 3 h and the aging treatment at 400 ℃ for 5 h, which can significantly enhance the mechanical properties of the alloy. The Vickers hardness, tensile strength and elongation of the alloy can reach 160.7 HV, 550 MPa and 18%, respectively.

  • [1]
    KARTHIK M, ABHINAV J, SHANKAR K V. Morphological and mechanical behaviour of Cu-Sn alloys-A review[J]. Metals and Materials International, 2021, 27(7): 1915-1946.
    [2]
    PARK J S, PARK C W, LEE K J. Implication of peritectic composition in historical high-tin bronze metallurgy[J]. Materials Characterization, 2009, 60(11): 1268-1275.
    [3]
    HISHINUMA Y, TANIGUCHI H, KIKUCHI A. Development of bronze processed Nb3Sn wires using various Cu-Sn-In ternary alloy matrices[J]. Fusion Engineering and Design, 2019, 146: 831-834.
    [4]
    HISHINUMA Y, OGURO H, TANIGUCHI H, et al. Development of the bronze processed Nb3Sn multifilamentary wires using Cu-Sn-Zn ternary alloy matrix[J]. Fusion Engineering and Design, 2017, 124: 90-93.
    [5]
    HISHINUMA Y, TANIGUCHI H, KIKUCHI A. Bronze processed Nb3Sn multifilamentary wires using various Cu-Sn-Zn solid solution strengthened bronze alloy matrices[J]. Journal of the Japan Institute of Metals and Materials, 2016, 80(7): 473-479.
    [6]
    胡小红, 江卫东. 大型铜套类铸件的金属型铸造工艺[J]. 铸造技术, 2005(9): 834-835.
    [7]
    BAI T X, ZHANG T W, MA S G, et al. Extra strengthening and work hardening in novel precipitation-hardened FeCrNiSixmedium-entropy alloys[J]. Advanced Engineering Materials, 2021, 23(4):2001185.
    [8]
    FANG J Y, LIU W, YANG T, et al. Multicomponent precipitation and strengthening in intermetallic-strengthened alloys[J]. Frontiers in Materials, 2022, 9(6):1-6.
    [9]
    FANG Q H, LI L, LI J, et al. A statistical theory of probability-dependent precipitation strengthening in metals and alloys[J]. Journal of the Mechanics and Physics of Solids, 2019, 122: 177-189.
    [10]
    XU S S, ZHAO Y, TONG X, et al. Independence of work hardening and precipitation strengthening in a nanocluster strengthened steel[J]. Journal of Alloys and Compounds, 2017, 712: 573-578.
    [11]
    YANG M C, LIU S D, ZHANG Y, et al. Mechanism for enhanced precipitation strengthening due to the addition of copper to Al-Zn-Mg alloys with high Zn/Mg ratio[J]. Materials & Design, 2023, 234:1-12.
    [12]
    多国志, 肖明. 新型锡青铜的研制和应用[J]. 机械工人, 2005(9): 75-76.
    [13]
    LI N J, LI X N, LI Z M, et al. Differential effects of Zn and Co solutes on the properties of Cu-Ni-Sn alloys[J]. Intermetallics, 2020, 125:1-12.
    [14]
    NAEEM H T, MOHAMMED K S, AHMAD K R, et al. The influence of nickel and tin additives on the microstructural and mechanical properties of Al-Zn-Mg-Cu Alloys[J]. Advances in Materials Science and Engineering, 2014(1): 1-10.
    [15]
    TANG S L, ZHOU M, ZHANG Y, et al. Improved microstructure, mechanical properties and electrical conductivity of the Cu-Ni-Sn-Ti-Cr alloy due to Ce micro-addition[J]. Materials Science and Engineering :A,2023, 871:1-8.
    [16]
    齐昭铭, 许华本, 乐顺聪, 等.稀土元素镧对Cu-15Ni-8Sn合金组织及性能的影响[J]. 有色金属科学与工程, 2023, 14(4):569-579.
    [17]
    KAREVA N T, YAKOVLEVA I L, SAMOILOVA O V. On the precipitation strengthening of Cu-2.6Ni-0.6Si-0.6Cr bronzes[J]. Physics of Metals and Metallography, 2017, 118(8): 795-801.
    [18]
    WANG W, KANG H J, CHEN Z N, et al. Effects of Cr and Zr additions on microstructure and properties of Cu-Ni-Si alloys[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing:A,2016, 673: 378-390.
    [19]
    WANG Z, LI J, FAN Z Z, et al. Effects of Co Addition on the microstructure and properties of elastic Cu-Ni-Si-based alloys for electrical connectors[J]. Materials, 2021, 14(8):1996.
    [20]
    WU Y K, LI Y, LU J Y, et al. Effects of pre-deformation on precipitation behaviors and properties in Cu-Ni-Si-Cr alloy[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing:A,2019, 742: 501-507.
    [21]
    叶青, 冯兴宇, 赵鸿金.固溶时间对Cu-Ni-Si-Mg合金组织性能的影响[J].有色金属科学与工程,2017,8(3):79-83.
    [22]
    HAN J Q, WU Y Y, ZHAO K, et al. Effect of boron on aging strengthened phase and properties of Cu-Cr-Zr alloy[J]. Journal of Materials Research and Technology-Jmr&T, 2022, 19: 532-541.
    [23]
    LI Y D, YANG B B, ZHANG P, et al. Cu-Cr-Mg alloy with both high strength and high electrical conductivity manufactured by powder metallurgy process[J]. Materials Today Communications, 2021, 27:102266.
    [24]
    PENG H C, XIE W B, CHEN H M, et al. Effect of micro-alloying element Ti on mechanical properties of Cu-Cr alloy[J]. Journal of Alloys and Compounds, 2021, 852:1-9.
    [25]
    彭丽军, 解浩峰, 尹向前, 等. 均匀化处理对Cu-Cr-Zr合金显微组织的影响[J].有色金属科学与工程, 2014, 5(5): 68-73.
    [26]
    AKSHAY M C, SENAN V R A, SUREJ K S V, et al. Determination on the effect of Ti addition on the microstructural, mechanical and wear behavior of Cu-6Sn Alloy in as-cast condition[J]. Transactions of the Indian Institute of Metals, 2020, 73(2): 309-318.
    [27]
    WU T, YUAN D W, HUANG H, et al. Enhanced mechanical strength of Cu-Sn alloy by Mg addition[J]. Materials Research Express, 2021, 8(1) : 30-330.
    [28]
    苑和锋, 肖翔鹏, 陈辉明, 等. 微量Fe对半连续铸造锡青铜组织性能的影响[J]. 有色金属科学与工程, 2014, 5(5): 56-60.
    [29]
    王明杰, 张国伟, 刘少杰. 微量元素对铅锡青铜组织与性能的影响[J]. 热加工工艺, 2016, 45(5): 87-89.
    [30]
    QIN Y Q, TIAN Y, PENG Y Q, et al. Research status and development trend of preparation technology of ceramic particle dispersion strengthened copper-matrix composites[J]. Journal of Alloys and Compounds, 2020, 848:1-14.
    [31]
    游龙, 焦景华, 邢志辉, 等. 析出强化锡青铜时效硬化研究[J]. 铸造, 2015, 64(2): 110-112.
    [32]
    张静. 稀土Ce及热处理对锡青铜组织和硬度的影响[J]. 特种铸造及有色合金, 2014, 34(11): 1202-1204.
    [33]
    HU T, CHEN J H, LIU J Z, et al. The crystallographic and morphological evolution of the strengthening precipitates in Cu-Ni-Si alloys[J]. Acta Materialia, 2013, 61(4): 1210-1219.
    [34]
    陆德平. 高强高导电铜合金研究[D]. 上海:上海交通大学, 2007.
  • Related Articles

    [1]GONG Ziqi, ZHENG Liyin. Study on the composition optimization and microstructure properties of super high-strength aluminum alloy with scandium[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 75-84. DOI: 10.13264/j.cnki.ysjskx.2025.01.009
    [2]ZHANG Bo, LIU Yi, XIA Shubiao. Effects of heat treatment on the microstructure and mechanical performance of Co-Cr alloy by selective laser melting[J]. Nonferrous Metals Science and Engineering, 2024, 15(2): 265-273. DOI: 10.13264/j.cnki.ysjskx.2024.02.013
    [3]DU Mingxing, LENG Jinfeng, LI Zhanzhi, YIN Yuhu. Effect of trace Er and Zr addition on mechanical properties of 6082 Al alloy during solid solution-aging treatment[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 139-146. DOI: 10.13264/j.cnki.ysjskx.2024.01.017
    [4]QI Zhaoming, XU Huaben, LE Shuncong, HUANG Hui, GUO Chengjun, XIAO Xiangpeng, YANG Bin. Effect of rare earth lanthanum on microstructure and properties of Cu-15Ni-8Sn alloy[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 569-579. DOI: 10.13264/j.cnki.ysjskx.2023.04.016
    [5]YANG Yuping, SU Ruiming, MA Siyi, NIE Sainan, LI Guanglong. Effects of Ni on structure and mechanical properties of Al-Cu-Mn alloy[J]. Nonferrous Metals Science and Engineering, 2023, 14(1): 67-73. DOI: 10.13264/j.cnki.ysjskx.2023.01.009
    [6]QUAN Yongqi, CHENG Hanming, WANG Herui, ZHAO Yao, LIN Gaoyong. Effects of heat treatment on the microstructure and mechanical properties of die casting AlSi10MnMg alloy[J]. Nonferrous Metals Science and Engineering, 2022, 13(2): 98-106. DOI: 10.13264/j.cnki.ysjskx.2022.02.014
    [7]WU Wenbo, CUI Shuhui, ZHENG Xueqing, XING Meishan. Determination the production process of Cu-Ni-Si alloy for the motor[J]. Nonferrous Metals Science and Engineering, 2020, 11(2): 76-81. DOI: 10.13264/j.cnki.ysjskx.2020.02.011
    [8]QI Haiquan, QIN Xiangzhi, SUN Yanhuan, LYU Yuan, WU Shunyi, RUAN Rencheng. Mechanical properties of Q235/5083 dissimilar material self-impact riveting head[J]. Nonferrous Metals Science and Engineering, 2018, 9(6): 45-49. DOI: 10.13264/j.cnki.ysjskx.2018.06.007
    [9]HUANG Lihua, ZHANG Tao, ZHANG Xiaobo. Effects of heat treatment and extrusion on the microstructures and mechanical properties of WE53 magnesium alloy[J]. Nonferrous Metals Science and Engineering, 2014, 5(6): 67-70. DOI: 10.13264/j.cnki.ysjskx.2014.06.011
    [10]LI Sanhua, LEI Qian, LI Zhou, ZHANG Liang, WANG Mengying, LIU Huiqun. Micro-structures and properties of ultra-high strength Cu-Ni-Si-Mg-Cr alloy[J]. Nonferrous Metals Science and Engineering, 2014, 5(5): 35-38,78. DOI: 10.13264/j.cnki.ysjskx.2014.05.006

Catalog

    Article Metrics

    Article views (20) PDF downloads (3) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return