Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
PEI Qifei, GUO Mengwei, SHAO Weichun, WANG Enze, GAO Mingyuan, ZHANG Qibo. Electrochemical analysis of the simultaneous electrolysis of zinc and manganese dioxide in zinc electrowinning system[J]. Nonferrous Metals Science and Engineering, 2024, 15(3): 322-331. DOI: 10.13264/j.cnki.ysjskx.2024.03.002
Citation: PEI Qifei, GUO Mengwei, SHAO Weichun, WANG Enze, GAO Mingyuan, ZHANG Qibo. Electrochemical analysis of the simultaneous electrolysis of zinc and manganese dioxide in zinc electrowinning system[J]. Nonferrous Metals Science and Engineering, 2024, 15(3): 322-331. DOI: 10.13264/j.cnki.ysjskx.2024.03.002

Electrochemical analysis of the simultaneous electrolysis of zinc and manganese dioxide in zinc electrowinning system

More Information
  • Received Date: May 19, 2023
  • Revised Date: July 02, 2023
  • Available Online: July 04, 2024
  • In this work, the electrochemical process of the simultaneous electrolysis of zinc and manganese dioxide was systematically analyzed based on cyclic voltammetry, linear voltammetry, and electrochemical impedance spectroscopy, combined with electrolytic experiments. The results show that the reduction of Zn2+ and the oxidation of Mn2+ in the system do not interfere with each other within a Mn2+ concentration lower than 10 g/L. Increasing the concentration of Mn2+ is beneficial for electrolysis in the same cell. However, if the concentration of Mn2+ is too high, it will increase the generation of oxidizing MnO4-, leading to the dissolution of cathode Zn by chemical oxidation;The electro-oxidation process of Mn2+ is affected by the passivation of the electrode interface. Increasing the concentration of Mn2+ is favorable to the same groove electrolysis. However, an over-high concentration of Mn2+ will increase the production of oxidative MnO4-, resulting in the dissolution of the cathode Zn by the chemical oxidation. In addition, increasing the deposition temperature can improve the same groove electrolysis performance of Zn-MnO2, but an excessively high temperature (≥ 80 ℃) will accelerate the corrosion of Zn. The optimal conditions of same groove electrolysis of Zn and MnO2 are as follows: Mn2+ concentration is 10 g/L, with a cathode current density of 40 mA/cm2 and an anode current density of 10 mA/cm2, respectively, at a temperature of 60 ℃. In the optimal conditions, cathode and anode current efficiencies are 94.81% and 12.16%, respectively. The energy consumption per ton of zinc is 2 456.58 kW·h, and the anodic product isε-MnO2.

  • [1]
    杨筱筱, 李雨耕, 张永平, 等. 降低锌电积直流电单耗的对策[J]. 云南冶金, 2020, 49(2): 50-52.
    [2]
    SIWAL S S. Recent progress of precious-metal-free electrocatalysts for efficient water oxidation in acidic media[J]. Journal of Energy Chemistry, 2020, 51: 113-133.
    [3]
    李海涛. 锌冶炼电积工艺有机烧板探究[J]. 中国金属通报, 2019(11): 126-128.
    [4]
    BISWAL A, CHANDRA TRIPATHY B, SANJAY K, et al. Electrolytic manganese dioxide (EMD): a perspective on worldwide production, reserves and its role in electrochemistry [J]. RSC Advances, 2015, 5(72): 58255-58283.
    [5]
    梁琨,陈斌. 硫酸体系同时电解Zn-MnO2的研究[J]. 化工之友, 2006(11): 41-43.
    [6]
    ABID CHAREF S,AFFOUNE A M,CABALLERO A, et al. Simultaneous recovery of Zn and Mn from used batteries in acidic and alkaline mediums: A comparative study[J]. Waste management, 2017, 68: 518-526.
    [7]
    刘荣义, 钟竹前, 梅光贵, 等. Cu-MnO2同槽电解半工业试验研究[J]. 中国锰业, 1995, 13(5): 27-32.
    [8]
    YUAN L. Study on simultaneous electrolysis depositing of Ni-MnO2 in sulphuric acid system[J]. Nonferrous Metals, 2002.
    [9]
    张文山, 梅光贵, 刘荣义, 等. Mn-MnO2同槽电解[J]. 中国锰业, 2007, 25(3): 7-9.
    [10]
    HU X F, ROBLES A, VIKSTRÖM T, et al. A novel process on the recovery of zinc and manganese from spent alkaline and zinc-carbon batteries[J]. Journal Hazardous Materials, 2021, 411: 124928.
    [11]
    RÁCZ R, ILEA P. Electrolytic recovery of Mn3O4 and Zn from sulphuric acid leach liquors of spent zinc-carbon-MnO2 battery powder[J]. Hydrometallurgy, 2013, 139: 116-123.
    [12]
    DE SOUZA C C B M, TENÓRIO J A S. Simultaneous recovery of zinc and manganese dioxide from household alkaline batteries through hydrometallurgical processing[J]. Journal of Power Sources, 2004, 136(1): 191-196.
    [13]
    YE W Q, XU F Y, JIANG L H, et al. A novel functional lead-based anode for efficient lead dissolution inhibition and slime generation reduction in zinc electrowinning[J]. Journal of Cleaner Production, 2021, 284: 124767.
    [14]
    WANG Z L,PENG C,YLINIEMI K, et al. Recovery of high-purity silver from spent silver oxide batteries by sulfuric acid leaching and electrowinning[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(41): 15573-15583.
    [15]
    李晓龙. 硫酸体系中锌—二氧化锰同时电解的研究[D].西安: 西安建筑科技大学, 2005.
    [16]
    钟竹前, 梅光贵, 蔡传算, 等. Zn-MnO2同时电解工业试验研究(上)[J]. 中国锰业, 1994, 12(3): 45-50.
    [17]
    王步祥, 舒庆. 单原子电催化析氢催化剂的研究进展[J]. 有色金属科学与工程, 2022, 13(5): 92-100.
    [18]
    张文山, 梅光贵, 钟竹前. Zn-MnO2同槽电解工业生产试验研究[J]. 中国锰业, 2006, 24(4): 38-41.
    [19]
    JAIMES R,MIRANDA-HERNÁNDEZ M, Lartundo-Rojas L, et al. Characterization of anodic deposits formed on Pb-Ag electrodes during electrolysis in mimic zinc electrowinning solutions with different concentrations of Mn(Ⅱ)[J]. Hydrometallurgy, 2015, 156: 53-62.
    [20]
    裴启飞, 卢文鹏, 郭孟伟, 等. 高效电解二氧化锰电化学分析研究[J]. 有色金属科学与工程, 2023,14(5): 606-614.
    [21]
    赵崇涛. 钛基二氧化铅电极电解制取微粒二氧化锰[J]. 无机盐工业, 1992(1):2-5.
    [22]
    廖兵, 刘静, 徐芬. 硫酸锰溶液电解制备二氧化锰技术研究进展[J]. 矿产综合利用, 2019(4): 16-20.
    [23]
    GUO M W, DENG R R, WANG C W, et al. Recent progress of advanced manganese oxide-based materials for acidic oxygen evolution reaction: Fundamentals, performance optimization, and prospects[J]. Journal of Energy Chemistry, 2023, 78: 537-553.
    [24]
    谭承德, 江丽. 用低品位锰矿和废硫酸亚铁制备高纯二氧化锰的研究[J]. 中国锰业, 1995, 13(3): 49-52.
  • Cited by

    Periodical cited type(3)

    1. 石勇,郑伯坤,段弘宇,黄腾龙,彭亮,赖伟,廖舟. 桨叶复合结构对充填料浆均质化的影响研究. 矿业研究与开发. 2024(06): 149-155 .
    2. 高晨育,李强. 双层桨搅拌釜气液两相流的混合效果研究. 化工机械. 2024(04): 546-549+633 .
    3. 王忠锋,冯羽生,黄伟玲. 不同结构组态对导流筒搅拌槽混合效率影响分析. 有色金属科学与工程. 2024(06): 814-821+855 . 本站查看

    Other cited types(5)

Catalog

    Article Metrics

    Article views (84) PDF downloads (13) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return