Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
ZHANG Wanlong, HUANG Zhengxin, ZUO Haibin, ZHAO Shiqiang. Numerical simulation of smelting characteristics in moving-bed of melter gasifier[J]. Nonferrous Metals Science and Engineering, 2017, 8(6): 7-12. DOI: 10.13264/j.cnki.ysjskx.2017.06.002
Citation: ZHANG Wanlong, HUANG Zhengxin, ZUO Haibin, ZHAO Shiqiang. Numerical simulation of smelting characteristics in moving-bed of melter gasifier[J]. Nonferrous Metals Science and Engineering, 2017, 8(6): 7-12. DOI: 10.13264/j.cnki.ysjskx.2017.06.002

Numerical simulation of smelting characteristics in moving-bed of melter gasifier

More Information
  • Received Date: May 01, 2017
  • Published Date: December 30, 2017
  • The melted gasifier packed bed is the main smelting place for smelting prereduced charge into liquid hot metal and using lump coal to generate large amount of reduced gas for prereduction shaft furnace. In this paper, a one-dimensional steady-state mathematical model of a melted gasifier packed bed was established. The temperature and composition distribution of the reduced gas and solid charge in the packed bed were numerically simulated. The results show that sponge iron gradually melts into liquid molten iron as the solid charge decreases when the temperature difference between sponge iron and lump coal and flux is relatively large, To the bottom of the packed bed, hot metal temperature is up to 1 774 K. On the other hand, with the increase of gas flow, the pyrolysis of lump coal increased the volume concentration of H2 significantly, and the volumetric concentration of CO2 gradually increased with flux decomposition and sponge iron reduction. At the upper part of the packed bed, the volume concentration of CO stabilized at 71.8 %.
  • [1]
    DELPORT H M W. The COREX process[J]. Ironmaking & steelmaking, 1992, 19(3): 183-189.
    [2]
    吴俐俊, 苏允隆. COREX炼铁法的现状及发展前景[J].钢铁, 1996, 31(9): 69-74. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gant609.017&dbname=CJFD&dbcode=CJFQ
    [3]
    张殿伟, 郭培民, 赵沛.现代炼铁技术进展[J].钢铁钒钛, 2006, 27(2): 26-32. doi: 10.7513/j.issn.1004-7638.2006.02.006
    [4]
    杜开平, 赵世强, 吴胜利.熔融气化炉风口回旋区冶炼特征的数值模拟研究[J].有色金属科学与工程, 2017, 8(2): 8-13. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=2017020002
    [5]
    LEE S C, SHIN M K, JOO S, et al. A development of computer model for simulating the transport phenomena in corex melter gasifier[J]. ISIJ International, 1999, 39(4): 319-328. doi: 10.2355/isijinternational.39.319
    [6]
    LEE S C, SHIN M K, JOO S, et al. The Effects of Operational Parameters on the Transport Phenomena in COREX Melter Gasifier[J]. ISIJ International, 2000, 40(11): 1073-1079. doi: 10.2355/isijinternational.40.1073
    [7]
    PAL S, LAHIRI A K. Mathematical Model of COREX Melter Gasifier: Part Ⅰ. Steady-State Model[J]. Metallurigal and Materials Transactions B, 2003, 34B(2): 103-114. doi: 10.1007/s11663-003-0060-7
    [8]
    AUSTIN P R, NOGAMI H, YAGI J. A mathematical model of four phase motion and heat transfer in the blast furnace[J]. ISIJ International, 1997, 37(5): 458-467. doi: 10.2355/isijinternational.37.458
    [9]
    AUSTIN P R, NOGAMI H, YAGI J. A mathematical model for blast furnace reaction analysis based on the four fluid model[J]. ISIJ International, 1997, 37(8): 748-755. doi: 10.2355/isijinternational.37.748
    [10]
    HARA Y, TSUCHIYA M, KONDO S. Intraparticle temperature of iron-oxide pellet during the reduction[J]. Tetsu-to-Hagané, 1974, 60(9): 1261-1270. doi: 10.2355/tetsutohagane1955.60.9_1261
    [11]
    Muchi I. Mathematical model of blast furnace[J]. Transactions of the Iron and Steel Institute of Japan, 1967, 7(2), 223-236.
    [12]
    KUWABARA M, HSIEH Y S, MUGHI I. A kinetic model of coke combustion in the tuyere zone of blast furnace[J]. Tetsu-to-Hagané, 1980, 66(13): 1918-1927. doi: 10.2355/tetsutohagane1955.66.13_1918
    [13]
    AOKI H, NOGAMI H, TSUGE H, et al. Simulation of transport phenomena around the raceway zone in the blast furnace with and without pulverized coal injection[J]. ISIJ International, 1993, 33(6): 646-656. doi: 10.2355/isijinternational.33.646
    [14]
    SHEN Y S, GUO B Y, YU A B, et al. Three-dimensional modelling of in-furnace coal/coke combustion in a blast furnace[J]. Fuel, 2011, 90(2): 728-738. doi: 10.1016/j.fuel.2010.08.030
    [15]
    熊林, 朱锦明, 李建. COREX-3000风口破损的原因分析和对策[J].宝钢技术, 2011, (6): 24-28. https://www.wenkuxiazai.com/doc/8b06184b336c1eb91a375d7a.html
    [16]
    QU Y, ZOU Z, XIAO Y. A comprehensive static model for COREX process[J]. ISIJ international, 2012, 52(12): 2186-2193. doi: 10.2355/isijinternational.52.2186
    [17]
    YAMAMOTO T, UJISAWA Y, ISHIDA H, et al. Operation and design of scrap melting process of the packed bed type[J]. ISIJ International, 1999, 39(7): 705-714. doi: 10.2355/isijinternational.39.705
    [18]
    PERRY R H, GREEN D W, MALONEY J O. Perry's chemical engineers' handbook[M]. New York: McGraw-Hill, 1997.
    [19]
    SHEN W, WU S L, KOU M Y, et al. The establishment of a static model based on the measured heat loss for corex process[J]. Journal of Iron and Steel Research, International, 2015, 22(3): 200-206. doi: 10.1016/S1006-706X(15)60030-9
    [20]
    SHEN W, WU S L, DU K P, et al. Measurements of heat loss and its distribution for COREX-3000 ironmaking process[J]. Metallurgical Research & Technology, 2014, 111(2): 75-84. http://journals.cambridge.org/abstract_S2271364614000179
  • Related Articles

    [1]GUO Hao, WANG Yajie, ZHAO Hongbo, ZUO Haibin. Numerical simulation of pulverized coal forming process[J]. Nonferrous Metals Science and Engineering, 2024, 15(3): 357-363. DOI: 10.13264/j.cnki.ysjskx.2024.03.006
    [2]NIE Jincheng, YE Jieyun, WANG Zhigang, HE Xiaoxuan, CHEN Zihui. Casting process optimization of martensitic stainless steel baffle based on ProCAST numerical simulation[J]. Nonferrous Metals Science and Engineering, 2020, 11(6): 27-33. DOI: 10.13264/j.cnki.ysjskx.2020.06.004
    [3]DU Kaiping, ZHAO Shiqiang, WU Shengli. Numerical simulation of smelting characteristics around raceway in melter gasifier[J]. Nonferrous Metals Science and Engineering, 2017, 8(2): 8-13. DOI: 10.13264/j.cnki.ysjskx.2017.02.002
    [4]CHENG Qiuting, DENG Fei, CHEN Yanhong, XIA Yijiang, WANG Xiaojun. Numerical simulation analysis on the stability of mined-out area[J]. Nonferrous Metals Science and Engineering, 2015, (2): 85-88. DOI: 10.13264/j.cnki.ysjskx.2015.02.016
    [5]WANG Jin-liang, WANG Jun. Numerical simulation of copper flash continuous smelting furnace structure[J]. Nonferrous Metals Science and Engineering, 2014, 5(1): 30-36. DOI: 10.13264/j.cnki.ysjskx.2014.01.006
    [6]ZHAO Kui, SHAO Hai, XU Feng, ZENG Peng, DENG Xiao-ping, WANG Ming. Numerical simulation of stability of mining of different mining entrances in a copper mine[J]. Nonferrous Metals Science and Engineering, 2013, 4(2): 46-50. DOI: 10.13264/j.cnki.ysjskx.2013.02.009
    [7]RAO Yun-zhang, CHEN Hui, XIAO Guang-zhe, CHEN Guo-liang. On the Design of Stope Bottom Structures Based on FLAC 3D Numerical Simulation[J]. Nonferrous Metals Science and Engineering, 2011, 2(2): 43-47. DOI: 10.13264/j.cnki.ysjskx.2011.02.009
    [8]XU Cong-wu, ZHAO Kui, XIE Dao-hui. Numerical Simulation Research on Tunnel Arrangement in Schistosity Rock[J]. Nonferrous Metals Science and Engineering, 2008, 22(3): 6-8.
    [9]CUI Dong-liang, LI Xi-bing, ZHAO Guo-ya. Analysis of the Numerical Simulation to Structure Parameter of Hard-To-Mine Ore Body in Xincheng Gold Mine[J]. Nonferrous Metals Science and Engineering, 2006, 20(3): 13-17.
    [10]QIAO Jun-yu, XU Guo-yuan. Numerical Simulation in Reinforcement for Deep Foundation Pit with Soil Nailing[J]. Nonferrous Metals Science and Engineering, 2005, 19(4): 24-24.

Catalog

    Article Metrics

    Article views (107) PDF downloads (9) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return