Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
ZHANG Wanlong, HUANG Zhengxin, ZUO Haibin, ZHAO Shiqiang. Numerical simulation of smelting characteristics in moving-bed of melter gasifier[J]. Nonferrous Metals Science and Engineering, 2017, 8(6): 7-12. DOI: 10.13264/j.cnki.ysjskx.2017.06.002
Citation: ZHANG Wanlong, HUANG Zhengxin, ZUO Haibin, ZHAO Shiqiang. Numerical simulation of smelting characteristics in moving-bed of melter gasifier[J]. Nonferrous Metals Science and Engineering, 2017, 8(6): 7-12. DOI: 10.13264/j.cnki.ysjskx.2017.06.002

Numerical simulation of smelting characteristics in moving-bed of melter gasifier

More Information
  • Received Date: May 01, 2017
  • Published Date: December 30, 2017
  • The melted gasifier packed bed is the main smelting place for smelting prereduced charge into liquid hot metal and using lump coal to generate large amount of reduced gas for prereduction shaft furnace. In this paper, a one-dimensional steady-state mathematical model of a melted gasifier packed bed was established. The temperature and composition distribution of the reduced gas and solid charge in the packed bed were numerically simulated. The results show that sponge iron gradually melts into liquid molten iron as the solid charge decreases when the temperature difference between sponge iron and lump coal and flux is relatively large, To the bottom of the packed bed, hot metal temperature is up to 1 774 K. On the other hand, with the increase of gas flow, the pyrolysis of lump coal increased the volume concentration of H2 significantly, and the volumetric concentration of CO2 gradually increased with flux decomposition and sponge iron reduction. At the upper part of the packed bed, the volume concentration of CO stabilized at 71.8 %.
  • [1]
    DELPORT H M W. The COREX process[J]. Ironmaking & steelmaking, 1992, 19(3): 183-189.
    [2]
    吴俐俊, 苏允隆. COREX炼铁法的现状及发展前景[J].钢铁, 1996, 31(9): 69-74. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gant609.017&dbname=CJFD&dbcode=CJFQ
    [3]
    张殿伟, 郭培民, 赵沛.现代炼铁技术进展[J].钢铁钒钛, 2006, 27(2): 26-32. doi: 10.7513/j.issn.1004-7638.2006.02.006
    [4]
    杜开平, 赵世强, 吴胜利.熔融气化炉风口回旋区冶炼特征的数值模拟研究[J].有色金属科学与工程, 2017, 8(2): 8-13. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=2017020002
    [5]
    LEE S C, SHIN M K, JOO S, et al. A development of computer model for simulating the transport phenomena in corex melter gasifier[J]. ISIJ International, 1999, 39(4): 319-328. doi: 10.2355/isijinternational.39.319
    [6]
    LEE S C, SHIN M K, JOO S, et al. The Effects of Operational Parameters on the Transport Phenomena in COREX Melter Gasifier[J]. ISIJ International, 2000, 40(11): 1073-1079. doi: 10.2355/isijinternational.40.1073
    [7]
    PAL S, LAHIRI A K. Mathematical Model of COREX Melter Gasifier: Part Ⅰ. Steady-State Model[J]. Metallurigal and Materials Transactions B, 2003, 34B(2): 103-114. doi: 10.1007/s11663-003-0060-7
    [8]
    AUSTIN P R, NOGAMI H, YAGI J. A mathematical model of four phase motion and heat transfer in the blast furnace[J]. ISIJ International, 1997, 37(5): 458-467. doi: 10.2355/isijinternational.37.458
    [9]
    AUSTIN P R, NOGAMI H, YAGI J. A mathematical model for blast furnace reaction analysis based on the four fluid model[J]. ISIJ International, 1997, 37(8): 748-755. doi: 10.2355/isijinternational.37.748
    [10]
    HARA Y, TSUCHIYA M, KONDO S. Intraparticle temperature of iron-oxide pellet during the reduction[J]. Tetsu-to-Hagané, 1974, 60(9): 1261-1270. doi: 10.2355/tetsutohagane1955.60.9_1261
    [11]
    Muchi I. Mathematical model of blast furnace[J]. Transactions of the Iron and Steel Institute of Japan, 1967, 7(2), 223-236.
    [12]
    KUWABARA M, HSIEH Y S, MUGHI I. A kinetic model of coke combustion in the tuyere zone of blast furnace[J]. Tetsu-to-Hagané, 1980, 66(13): 1918-1927. doi: 10.2355/tetsutohagane1955.66.13_1918
    [13]
    AOKI H, NOGAMI H, TSUGE H, et al. Simulation of transport phenomena around the raceway zone in the blast furnace with and without pulverized coal injection[J]. ISIJ International, 1993, 33(6): 646-656. doi: 10.2355/isijinternational.33.646
    [14]
    SHEN Y S, GUO B Y, YU A B, et al. Three-dimensional modelling of in-furnace coal/coke combustion in a blast furnace[J]. Fuel, 2011, 90(2): 728-738. doi: 10.1016/j.fuel.2010.08.030
    [15]
    熊林, 朱锦明, 李建. COREX-3000风口破损的原因分析和对策[J].宝钢技术, 2011, (6): 24-28. https://www.wenkuxiazai.com/doc/8b06184b336c1eb91a375d7a.html
    [16]
    QU Y, ZOU Z, XIAO Y. A comprehensive static model for COREX process[J]. ISIJ international, 2012, 52(12): 2186-2193. doi: 10.2355/isijinternational.52.2186
    [17]
    YAMAMOTO T, UJISAWA Y, ISHIDA H, et al. Operation and design of scrap melting process of the packed bed type[J]. ISIJ International, 1999, 39(7): 705-714. doi: 10.2355/isijinternational.39.705
    [18]
    PERRY R H, GREEN D W, MALONEY J O. Perry's chemical engineers' handbook[M]. New York: McGraw-Hill, 1997.
    [19]
    SHEN W, WU S L, KOU M Y, et al. The establishment of a static model based on the measured heat loss for corex process[J]. Journal of Iron and Steel Research, International, 2015, 22(3): 200-206. doi: 10.1016/S1006-706X(15)60030-9
    [20]
    SHEN W, WU S L, DU K P, et al. Measurements of heat loss and its distribution for COREX-3000 ironmaking process[J]. Metallurgical Research & Technology, 2014, 111(2): 75-84. http://journals.cambridge.org/abstract_S2271364614000179
  • Related Articles

    [1]ZHANG Tingrui, WANG Mengjun, ZHEN Jinhui, FENG Zexi. High-temperature friction of Al-Zn-Mg alloy[J]. Nonferrous Metals Science and Engineering, 2022, 13(2): 76-81. DOI: 10.13264/j.cnki.ysjskx.2022.02.010
    [2]SUN Ke, LIU Jinping, WANG Jing. Study on the microstructure and properties of nickel-doped graphite-copper composites prepared by spark plasma sintering[J]. Nonferrous Metals Science and Engineering, 2020, 11(3): 65-72. DOI: 10.13264/j.cnki.ysjskx.2020.03.009
    [3]ZHANG Qinying, CHEN Hao, REN Xingrun, WEN Yan. Effect of Al target sputtering power on themicrostructure and tribological properties of CrAlN coatings[J]. Nonferrous Metals Science and Engineering, 2017, 8(5): 109-114. DOI: 10.13264/j.cnki.ysjskx.2017.05.016
    [4]LIU Wenyang, ZHANG Jianbo, WU Shanjiang, HU Meijun, CHEN Tingting, GUO Lili. Effects of Si on friction properties of Ti3SiC2/Al composites[J]. Nonferrous Metals Science and Engineering, 2017, 8(5): 89-94. DOI: 0.13264/j.cnki.ysjskx.2017.05.013
    [5]WANG Qi, JIAO Shuqiang, ZHU Hongmin, ZHAO Shiqiang. SPS sintering of amorphous nano-sized Si2N2O powders and characterization of its sintered bulks[J]. Nonferrous Metals Science and Engineering, 2017, 8(5): 58-63. DOI: 10.13264/j.cnki.ysjskx.2017.05.008
    [6]HUANG Zhu, LIU Meixia, LI Tianbai, ZHANG Xuehui, CHEN Hao. Friction and wear properties of electro-deposited Ni-W-WC composite coatings[J]. Nonferrous Metals Science and Engineering, 2016, 7(3): 66-70. DOI: 10.13264/j.cnki.ysjskx.2016.03.012
    [7]Liu Long, Zhou Shengguo, Wang Yuechen, Liu ZhengBing, Ma LiQiu. Microstructures and tribological properties of a-C:H film prepared by DC reactive magnetron sputtering[J]. Nonferrous Metals Science and Engineering, 2016, 7(1): 41-47. DOI: 10.13264/j.cnki.ysjskx.2016.01.009
    [8]WANG Chunting, YE Yuwei, HU Jianmin, CHEN Hao, WANG Yongxin, LI Jinlong. Tribological performances of CrCN coatings under different deposition temperatures[J]. Nonferrous Metals Science and Engineering, 2015, 6(2): 42-47. DOI: 10.13264/j.cnki.ysjskx.2015.02.008
    [9]LI Yong, LIU Rui-qing, XU Fang. Tribological Behaviors of Cu-Ag-Fe Alloy Carrying Electric Current[J]. Nonferrous Metals Science and Engineering, 2011, 2(3): 18-22.
  • Cited by

    Periodical cited type(6)

    1. 侯宏英,贾彦鹏,李俊凯,兰建,陈方淑. 石墨烯生产废液中双球状碳酸锰的提取及其电化学储锂性能. 有色金属科学与工程. 2024(01): 8-14 . 本站查看
    2. 刘力,杨天辉,周曦,孟冉浩. 氢化物对Mg_2Ni基合金储氢性能的影响. 有色金属科学与工程. 2023(06): 825-832 . 本站查看
    3. 胡海燕,武源波,刘益峰,唐瑞仁,吴雄伟,肖遥. 基于铝氧键稳定的隧道型钠离子电池正极材料. 有色金属科学与工程. 2022(02): 59-66 . 本站查看
    4. 张露,黄彬琪,王艳阳,龙腾威,刘嘉铭. 分级结构MoO_2/C微球作为高性能锂离子电池负极材料研究. 江西冶金. 2022(05): 31-35 .
    5. 文敏,徐子其,张克,李轩,胡君辉,罗虹,尹艳红. 氧化钨/碳纳米管膜复合负极的制备及其储锂性能. 有色金属科学与工程. 2021(04): 58-65 . 本站查看
    6. 李基铭,覃慧,刘嘉铭. 水热法制备V_2O_5作为高性能锂离子电池正极材料. 有色金属(冶炼部分). 2021(11): 79-84 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (107) PDF downloads (9) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return