Citation: | ZHANG Wanlong, HUANG Zhengxin, ZUO Haibin, ZHAO Shiqiang. Numerical simulation of smelting characteristics in moving-bed of melter gasifier[J]. Nonferrous Metals Science and Engineering, 2017, 8(6): 7-12. DOI: 10.13264/j.cnki.ysjskx.2017.06.002 |
[1] |
DELPORT H M W. The COREX process[J]. Ironmaking & steelmaking, 1992, 19(3): 183-189.
|
[2] |
吴俐俊, 苏允隆. COREX炼铁法的现状及发展前景[J].钢铁, 1996, 31(9): 69-74. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gant609.017&dbname=CJFD&dbcode=CJFQ
|
[3] |
张殿伟, 郭培民, 赵沛.现代炼铁技术进展[J].钢铁钒钛, 2006, 27(2): 26-32. doi: 10.7513/j.issn.1004-7638.2006.02.006
|
[4] |
杜开平, 赵世强, 吴胜利.熔融气化炉风口回旋区冶炼特征的数值模拟研究[J].有色金属科学与工程, 2017, 8(2): 8-13. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=2017020002
|
[5] |
LEE S C, SHIN M K, JOO S, et al. A development of computer model for simulating the transport phenomena in corex melter gasifier[J]. ISIJ International, 1999, 39(4): 319-328. doi: 10.2355/isijinternational.39.319
|
[6] |
LEE S C, SHIN M K, JOO S, et al. The Effects of Operational Parameters on the Transport Phenomena in COREX Melter Gasifier[J]. ISIJ International, 2000, 40(11): 1073-1079. doi: 10.2355/isijinternational.40.1073
|
[7] |
PAL S, LAHIRI A K. Mathematical Model of COREX Melter Gasifier: Part Ⅰ. Steady-State Model[J]. Metallurigal and Materials Transactions B, 2003, 34B(2): 103-114. doi: 10.1007/s11663-003-0060-7
|
[8] |
AUSTIN P R, NOGAMI H, YAGI J. A mathematical model of four phase motion and heat transfer in the blast furnace[J]. ISIJ International, 1997, 37(5): 458-467. doi: 10.2355/isijinternational.37.458
|
[9] |
AUSTIN P R, NOGAMI H, YAGI J. A mathematical model for blast furnace reaction analysis based on the four fluid model[J]. ISIJ International, 1997, 37(8): 748-755. doi: 10.2355/isijinternational.37.748
|
[10] |
HARA Y, TSUCHIYA M, KONDO S. Intraparticle temperature of iron-oxide pellet during the reduction[J]. Tetsu-to-Hagané, 1974, 60(9): 1261-1270. doi: 10.2355/tetsutohagane1955.60.9_1261
|
[11] |
Muchi I. Mathematical model of blast furnace[J]. Transactions of the Iron and Steel Institute of Japan, 1967, 7(2), 223-236.
|
[12] |
KUWABARA M, HSIEH Y S, MUGHI I. A kinetic model of coke combustion in the tuyere zone of blast furnace[J]. Tetsu-to-Hagané, 1980, 66(13): 1918-1927. doi: 10.2355/tetsutohagane1955.66.13_1918
|
[13] |
AOKI H, NOGAMI H, TSUGE H, et al. Simulation of transport phenomena around the raceway zone in the blast furnace with and without pulverized coal injection[J]. ISIJ International, 1993, 33(6): 646-656. doi: 10.2355/isijinternational.33.646
|
[14] |
SHEN Y S, GUO B Y, YU A B, et al. Three-dimensional modelling of in-furnace coal/coke combustion in a blast furnace[J]. Fuel, 2011, 90(2): 728-738. doi: 10.1016/j.fuel.2010.08.030
|
[15] |
熊林, 朱锦明, 李建. COREX-3000风口破损的原因分析和对策[J].宝钢技术, 2011, (6): 24-28. https://www.wenkuxiazai.com/doc/8b06184b336c1eb91a375d7a.html
|
[16] |
QU Y, ZOU Z, XIAO Y. A comprehensive static model for COREX process[J]. ISIJ international, 2012, 52(12): 2186-2193. doi: 10.2355/isijinternational.52.2186
|
[17] |
YAMAMOTO T, UJISAWA Y, ISHIDA H, et al. Operation and design of scrap melting process of the packed bed type[J]. ISIJ International, 1999, 39(7): 705-714. doi: 10.2355/isijinternational.39.705
|
[18] |
PERRY R H, GREEN D W, MALONEY J O. Perry's chemical engineers' handbook[M]. New York: McGraw-Hill, 1997.
|
[19] |
SHEN W, WU S L, KOU M Y, et al. The establishment of a static model based on the measured heat loss for corex process[J]. Journal of Iron and Steel Research, International, 2015, 22(3): 200-206. doi: 10.1016/S1006-706X(15)60030-9
|
[20] |
SHEN W, WU S L, DU K P, et al. Measurements of heat loss and its distribution for COREX-3000 ironmaking process[J]. Metallurgical Research & Technology, 2014, 111(2): 75-84. http://journals.cambridge.org/abstract_S2271364614000179
|
[1] | ZHANG Tingrui, WANG Mengjun, ZHEN Jinhui, FENG Zexi. High-temperature friction of Al-Zn-Mg alloy[J]. Nonferrous Metals Science and Engineering, 2022, 13(2): 76-81. DOI: 10.13264/j.cnki.ysjskx.2022.02.010 |
[2] | SUN Ke, LIU Jinping, WANG Jing. Study on the microstructure and properties of nickel-doped graphite-copper composites prepared by spark plasma sintering[J]. Nonferrous Metals Science and Engineering, 2020, 11(3): 65-72. DOI: 10.13264/j.cnki.ysjskx.2020.03.009 |
[3] | ZHANG Qinying, CHEN Hao, REN Xingrun, WEN Yan. Effect of Al target sputtering power on themicrostructure and tribological properties of CrAlN coatings[J]. Nonferrous Metals Science and Engineering, 2017, 8(5): 109-114. DOI: 10.13264/j.cnki.ysjskx.2017.05.016 |
[4] | LIU Wenyang, ZHANG Jianbo, WU Shanjiang, HU Meijun, CHEN Tingting, GUO Lili. Effects of Si on friction properties of Ti3SiC2/Al composites[J]. Nonferrous Metals Science and Engineering, 2017, 8(5): 89-94. DOI: 0.13264/j.cnki.ysjskx.2017.05.013 |
[5] | WANG Qi, JIAO Shuqiang, ZHU Hongmin, ZHAO Shiqiang. SPS sintering of amorphous nano-sized Si2N2O powders and characterization of its sintered bulks[J]. Nonferrous Metals Science and Engineering, 2017, 8(5): 58-63. DOI: 10.13264/j.cnki.ysjskx.2017.05.008 |
[6] | HUANG Zhu, LIU Meixia, LI Tianbai, ZHANG Xuehui, CHEN Hao. Friction and wear properties of electro-deposited Ni-W-WC composite coatings[J]. Nonferrous Metals Science and Engineering, 2016, 7(3): 66-70. DOI: 10.13264/j.cnki.ysjskx.2016.03.012 |
[7] | Liu Long, Zhou Shengguo, Wang Yuechen, Liu ZhengBing, Ma LiQiu. Microstructures and tribological properties of a-C:H film prepared by DC reactive magnetron sputtering[J]. Nonferrous Metals Science and Engineering, 2016, 7(1): 41-47. DOI: 10.13264/j.cnki.ysjskx.2016.01.009 |
[8] | WANG Chunting, YE Yuwei, HU Jianmin, CHEN Hao, WANG Yongxin, LI Jinlong. Tribological performances of CrCN coatings under different deposition temperatures[J]. Nonferrous Metals Science and Engineering, 2015, 6(2): 42-47. DOI: 10.13264/j.cnki.ysjskx.2015.02.008 |
[9] | LI Yong, LIU Rui-qing, XU Fang. Tribological Behaviors of Cu-Ag-Fe Alloy Carrying Electric Current[J]. Nonferrous Metals Science and Engineering, 2011, 2(3): 18-22. |
1. |
侯宏英,贾彦鹏,李俊凯,兰建,陈方淑. 石墨烯生产废液中双球状碳酸锰的提取及其电化学储锂性能. 有色金属科学与工程. 2024(01): 8-14 .
![]() | |
2. |
刘力,杨天辉,周曦,孟冉浩. 氢化物对Mg_2Ni基合金储氢性能的影响. 有色金属科学与工程. 2023(06): 825-832 .
![]() | |
3. |
胡海燕,武源波,刘益峰,唐瑞仁,吴雄伟,肖遥. 基于铝氧键稳定的隧道型钠离子电池正极材料. 有色金属科学与工程. 2022(02): 59-66 .
![]() | |
4. |
张露,黄彬琪,王艳阳,龙腾威,刘嘉铭. 分级结构MoO_2/C微球作为高性能锂离子电池负极材料研究. 江西冶金. 2022(05): 31-35 .
![]() | |
5. |
文敏,徐子其,张克,李轩,胡君辉,罗虹,尹艳红. 氧化钨/碳纳米管膜复合负极的制备及其储锂性能. 有色金属科学与工程. 2021(04): 58-65 .
![]() | |
6. |
李基铭,覃慧,刘嘉铭. 水热法制备V_2O_5作为高性能锂离子电池正极材料. 有色金属(冶炼部分). 2021(11): 79-84 .
![]() |