Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
Liu Long, Zhou Shengguo, Wang Yuechen, Liu ZhengBing, Ma LiQiu. Microstructures and tribological properties of a-C:H film prepared by DC reactive magnetron sputtering[J]. Nonferrous Metals Science and Engineering, 2016, 7(1): 41-47. DOI: 10.13264/j.cnki.ysjskx.2016.01.009
Citation: Liu Long, Zhou Shengguo, Wang Yuechen, Liu ZhengBing, Ma LiQiu. Microstructures and tribological properties of a-C:H film prepared by DC reactive magnetron sputtering[J]. Nonferrous Metals Science and Engineering, 2016, 7(1): 41-47. DOI: 10.13264/j.cnki.ysjskx.2016.01.009

Microstructures and tribological properties of a-C:H film prepared by DC reactive magnetron sputtering

More Information
  • Received Date: July 29, 2015
  • Published Date: February 28, 2016
  • A series of a-C:H films were deposited on silicon p(100) wafer and stainless steel substrates by DC reactive magnetron sputtering using graphite targets in an argon and methane atmosphere with different methane flow rate. Microstructures, mechanical and tribological properties were characterized systemically by FESEM, AFM, Raman spectroscopy, nano-indentation, CSM scratch tester and tribo-tester. The results showed that there was a lightly tendency of density of the a-C:H film with initially increase and then decrease as the increase of methane flow rate. The deposition rate of a-C:H film presented an increase as the increase of methane flow rate while the increase range was gradually reduced. Besides, the sp3 bond content, the nano-hardness and Young's modulus were increased at the initial stage and then decreased with the increase of methane flow. Frictional and wear behaviors showed that the a-C:H film deposited at the methane flow rate of 8 sccm was achieved low friction coefficient with 0.20 and high anti-wear with 6.48×10-7mm3(N·m).
  • [1]
    Robertson J.Diamond-like amorphous carbon[J].Materials Science & Engineering R Reports, 2002, 37(7A):129-281. http://www.sciencedirect.com/science/article/pii/S0927796X02000050
    [2]
    李敬财, 何玉定, 胡社军, 等.类金刚石薄膜的应用[J].新材料产业, 2004(3):39-42. http://mall.cnki.net/magazine/Article/XCLY200403011.htm
    [3]
    LETTINGTON A H.Applications of diamond-like carbon thin films[J].Philosophical Transactions of the Royal Society B Biological Sciences, 1998, 36(1664):555-560. http://www.sciencedirect.com/science/article/pii/S0008622398000621
    [4]
    程勇, 王会升, 郭延龙, 等.飞秒激光沉积红外窗口类金刚石增透保护膜[J].红外与激光工程, 2012, 40(12):2406-2407. http://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201112019.htm
    [5]
    DONNET C, ERDEMIR A.Tribology of diamond-like carbon films:fundamentals and applications[J].Springer Science + Business Media Llc, 2008, 24(6):399-401. http://www.springer.com/us/book/9780387302645
    [6]
    马国佳, 邓新绿.类金刚石膜的应用及制备[J].真空, 2002(5):27-31. http://www.cnki.com.cn/Article/CJFDTOTAL-ZKZK200205007.htm
    [7]
    AISENBERG S, CHABOT R. Ion-Beam Deposition Of Thin Films Of Diamondlike Carbon[J].Journal of Applied Physics, 1971, 42(7):2953-2958. doi: 10.1063/1.1660654
    [8]
    吴金龙, 周晖, 郑军, 等. H2/CH4流量比对含氢DLC薄膜结构及摩擦学性能的影响[J].中国表面工程, 2015, 28(1):42-48. http://www.csejournal.com/zgbmgc/ch/reader/view_abstract.aspx?file_no=20150107&flag=1
    [9]
    OLIVEIRA, HOSHIDA R M, UEDA L, et al.Influence of high frequency and moderate energy pulses on DLC deposition onto metallic substrates by magnetron sputtering technique[J]. Brazilian Journal of Physics, 2009, 39(2):331-336. doi: 10.1590/S0103-97332009000300017
    [10]
    BOOTKUL D, INTARASIRI S, ARAMWIT C, et al. Formation of thin DLC films on SiO2/Si substrate using FCVAD technique[J].Nuclear Instruments & Methods in Physics Research, 2013, 307(7):147-153. http://www.sciencedirect.com/science/article/pii/S0168583X13003212
    [11]
    KUMAR I, KHARE A.Raman spectra of PLD deposited DLC thin films on Si substrate[J].Aip Conference Proceedings, 2014, 1591(1):1018-1020. doi: 10.1063/1.4872838
    [12]
    何洋洋, 张贵锋, 侯晓多, 等.电化学沉积类金刚石薄膜阳极材料影响研究[J].材料导报:纳米与新材料专辑, 2014(1):236-239. http://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2014S1064.htm
    [13]
    王俊, 郝赛.磁控溅射技术的原理与发展[J].科技创新与应用, 2015(2):35-35. http://www.cnki.com.cn/Article/CJFDTOTAL-CXYY201502024.htm
    [14]
    黄星烨, 孙瑶, 张保军, 等.甲烷流量对类金刚石薄膜氢含量和性能的影响[J].武汉理工大学学报, 2013, 35(5):8-12. http://www.cnki.com.cn/Article/CJFDTOTAL-WHGY201305004.htm
    [15]
    王光祖.类金刚石DLC涂层[J].工业金刚石, 2010(1):35-39. http://qikan.cqvip.com/article/detail.aspx?id=34734714&from=zk_search
    [16]
    BEEMAN D, SILVERMAN J, LYNDS R, et al.Modeling studies of amorphous carbon[J]. Physical Review B, 1984, 30(2):870-875. doi: 10.1103/PhysRevB.30.870
    [17]
    刘海增, 代海洋, 陈镇平, 等.甲烷压强对类金刚石薄膜结构与性能的影响[J].兵器材料科学与工程, 2014(3):55-59. http://www.cnki.com.cn/Article/CJFDTOTAL-BCKG201403018.htm
    [18]
    谷坤明, 吕乐阳, 毛斐, 等.厚度对DLC薄膜内应力的影响研究[J].功能材料, 2011, 42(增刊1):102-105. http://www.cnki.com.cn/Article/CJFDTOTAL-GNCL2011S1031.htm
    [19]
    周升国, 王立平, 薛群基.磁控溅射Al靶功率对类金刚石薄膜结构和摩擦学性能的影响[J].摩擦学学报, 2011, 31(3):304-310. http://www.cnki.com.cn/Article/CJFDTOTAL-MCXX201103015.htm
  • Related Articles

    [1]FAN Wenxin, GAO Yang, WANG Pengfei, CHEN Yan, YUAN Xia, PENG Lijun, FU Yabo, ZHANG Zhongtao. Effect of Ni and Si additions on the microstructure and mechanical properties of Cu-7Sn alloy[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 85-95. DOI: 10.13264/j.cnki.ysjskx.2025.01.010
    [2]MA Junqi, TAO Xingzhen, PENG Lin, XIE Yufei. Crack detection and recognition based on improved BiSeNetV2[J]. Nonferrous Metals Science and Engineering, 2022, 13(6): 91-97. DOI: 10.13264/j.cnki.ysjskx.2022.06.012
    [3]LIU Chao, CHEN Jiqiang, WEN Feng, LI Qilong, ZHAO Hongjin. Preparation of Al-Cu-Li alloy single crystal by cyclic strain-high temperature annealing[J]. Nonferrous Metals Science and Engineering, 2021, 12(1): 81-89. DOI: 10.13264/j.cnki.ysjskx.2021.01.011
    [4]ZHUO Yulong, CHEN Chen, WANG Xiaojun, DENG Shuqiang, FENG Xiao, HU Yuan. Research on the mechanical properties of materials in blocky rock cemented filling[J]. Nonferrous Metals Science and Engineering, 2016, 7(1): 64-67. DOI: 10.13264/j.cnki.ysjskx.2016.01.013
    [5]XU Fen, WANG Jingli, ZHANG Zongpeng, LIN Gaoyong. Effects of pre-strain and pre-aging treatments on microstructure and properties of 6101 aluminum alloy used for electrical conductor[J]. Nonferrous Metals Science and Engineering, 2016, 7(1): 34-40. DOI: 10.13264/j.cnki.ysjskx.2016.01.008
    [6]DENG Fei, HAN Xiaoliang, LUO Fuyou, LUO Fulong, YIN Libing. Damage analysis of standstone in different moisture state[J]. Nonferrous Metals Science and Engineering, 2014, 5(6): 95-99. DOI: 10.13264/j.cnki.ysjskx.2014.06.016
    [7]RAO Yun-zhang, ZHONG Jian, GUI Wang-hua, YUAN Hai-ping, WEI Zhang-neng, ZHU Li-gang. The rock stress measurement by trepanning stress relief method in Longmenshan mining region[J]. Nonferrous Metals Science and Engineering, 2013, 4(3): 68-72. DOI: 10.13264/j.cnki.ysjskx.2013.03.008
    [8]ZENG Peng, ZHAO Kui, DENG Xiao-ping, SHAO Hai, WANG Ming, WU Yue-sheng, GAO Zhong. Grey correlation analysis between rock's chemical elements and compressive strength[J]. Nonferrous Metals Science and Engineering, 2013, 4(1): 79-82, 100. DOI: 10.13264/j.cnki.ysjskx.2013.01.001
    [9]ZHAO Yun-cai, LEI Fa-cheng. Strength Analysis of Ceramic Filter's Rotary Vacuum Based on ANSYS[J]. Nonferrous Metals Science and Engineering, 2009, 23(3): 42-45.
    [10]LIU Xin-rong, XIAN Xue-fu, YU Hai-long. The affection of lithological character to rock mechanical properties[J]. Nonferrous Metals Science and Engineering, 2001, 15(2): 11-13,22.

Catalog

    Article Metrics

    Article views (73) PDF downloads (4) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return