Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
LIU Li, YANG Tianhui, ZHOU Xi, MENG Ranhao. Effect of hydride on the hydrogen storage performance of Mg2Ni based alloys[J]. Nonferrous Metals Science and Engineering, 2023, 14(6): 825-832. DOI: 10.13264/j.cnki.ysjskx.2023.06.010
Citation: LIU Li, YANG Tianhui, ZHOU Xi, MENG Ranhao. Effect of hydride on the hydrogen storage performance of Mg2Ni based alloys[J]. Nonferrous Metals Science and Engineering, 2023, 14(6): 825-832. DOI: 10.13264/j.cnki.ysjskx.2023.06.010

Effect of hydride on the hydrogen storage performance of Mg2Ni based alloys

More Information
  • Received Date: October 16, 2022
  • Revised Date: January 01, 2023
  • Available Online: December 28, 2023
  • Pure Mg2Ni, Mg2Ni with TiH2 of 10% and Mg2Ni with NbH of 10% hydrogen storage alloys were prepared by mechanical ball milling, respectively. The effects of additives (TiH2, NbH) on the phase composition, microstructure and hydrogen storage properties of Mg2Ni hydrogen storage alloys were studied. The results showed that the unit cell volume of the Mg2NiH4/Mg2Ni phase of hydrogen storage alloys added with 10% TiH2 or NbH, decreased to varying degrees, after sufficient hydrogen absorption/desorption, compared with pure Mg2Ni hydrogen storage alloy. TiH2 was uniformly distributed in the hydrogen storage alloys after mechanical ball milling, while NbH was agglomerated to a certain extent. The hydrogen absorption and desorption platforms of the hydrogen storage alloys with the addition of 10% TiH2 or NbH were higher, and the enthalpy change and entropy change in the process of hydrogen evolution reaction were smaller than that of pure Mg2Ni alloy. In the same amount of time, hydrogen evolution capacity of hydrogen storage alloys was listed in order from the largest to the smallest: Mg2Ni + 10% TiH2>Mg2Ni + 10% NbH>pure Mg2Ni alloy. When the temperature was 573 K, the time required for the hydrogen storage alloy to reach the maximum hydrogen release capacity in order from least to most was Mg2Ni + 10% TiH2 < Mg2Ni + 10% NbH < pure Mg2Ni alloy. Adding hydride TiH2 or NbH will increase the reaction rate constant of hydrogen storage alloys, and TiH2 improves hydrogen diffusion performance better than NbH.
  • [1]
    梁前超, 赵建锋, 梁一帆, 等. 储氢技术发展现状[J]. 海军工程大学学报, 2022, 34(3): 92-101.
    [2]
    邓剑锋, 孔凡校, 朱立宗, 等. 添加剂REMg2Ni对Mg2Ni储氢材料性能的影响研究[J].电源技术, 2022, 46(11): 1261-1264.
    [3]
    郗玉平, 罗志欢. 氢化物载体LaMg2Ni对汽车用Mg2Ni合金储氢性能的影响[J]. 无机盐工业, 2022, 54(5): 61-66.
    [4]
    李亚琴, 尚宏伟, 查文珂, 等. La-Mg-Ni系A2B7型电极材料的研究进展[J]. 电池, 2022, 52(6): 698-702.
    [5]
    YONG H, WANG S, MA J W, et al. Dual-tuning of de/hydrogenation kinetic properties of Mg-based hydrogen storage alloy by building a Ni-/Co-multi-platform collaborative system[J]. International Journal of Hydrogen Energy, 2021, 46(47): 24202-24213.
    [6]
    王玉香, 赖华生, 文小强, 等. 氟化物体系熔盐电解制备YNi合金[J]. 有色金属科学与工程, 2021, 12(1): 126-130.
    [7]
    SONG J Z,HAN S M,FU R D. Effect of La2O3-CaO composite additive on the hydrogen storage properties of Mg2Ni alloy[J]. Materials Science and Engineering: B, 2014, 188: 114-118.
    [8]
    SHI Y, LENG H Y, WEI L, et al. The microstructure and electrochemical properties of Mn-doped La-Y-Ni-based metal-hydride electrode materials[J]. Electrochimica Acta, 2019, 296: 18-26.
    [9]
    苏张磊, 李 玮, 罗志敏. 汽车电池负极材料的制备与电化学性能研究[J]. 现代化工, 2022, 42(7): 141-146.
    [10]
    佘 翔, 刘冬梅, 李 雪, 等. 车用金属氢化物-镍电池负极材料的性能[J]. 电池, 2022, 52(1): 38-42.
    [11]
    GAO Z J, GENG Y H, LIN Z, et al. Synergistic effects of Gd and Co on the phase evolution mechanism and electrochemical performances of Ce2Ni7-type La-Mg-Ni-based alloys[J]. Dalton Transactions, 2020, 49(1): 156-163.
    [12]
    范庆科, 孟庆华. 汽车用La0.79Mg0.21Ni3.95储氢合金的制备与电化学性能研究[J]. 无机盐工业, 2022, 54(3): 71-76.
    [13]
    ZHAO X, HAN S M, ZHU X L, et al. Effect of LaH3-TiH2 composite additive on the hydrogen storage properties of Mg2Ni alloys[J]. Journal of Alloys and Compounds, 2013, 581: 270-274.
    [14]
    钟采妮, 陈哲钦, 卢彦华, 等. 锂离子电池用CuFe2O4立方颗粒负极材料的合成及其电化学性能[J]. 有色金属科学与工程, 2020, 11(3): 59-64.
    [15]
    YONG H,GUO S H,YUAN Z M, et al. Catalytic effect of in situ formed Mg2Ni and REHx (RE: Ce and Y) on thermodynamics and kinetics of Mg-RE-Ni hydrogen storage alloy[J]. Renewable Energy, 2020, 157: 828-839.
    [16]
    韦宁燕, 韦洪浪, 卢 照. 高稳定性低成本Mn0.75Mg0.25Ni3.5Co0.2Al0.3储氢合金制备与电化学性能研究[J]. 稀有金属与硬质合金, 2022, 50(3): 82-86, 92.
    [17]
    冯竞祥, 罗瑜清, 曹立祥. 新型钒基新能源汽车电池负极合金的制备与性能研究[J]. 钢铁钒钛, 2021, 42(3): 94-98.
    [18]
    朱敏, 欧阳柳章. 镁基储氢合金动力学调控及电化学性能[J]. 金属学报, 2021, 57(11): 1416-1428.
    [19]
    包科杰, 路凌然. 新能源汽车电池负极材料的制备与电化学性能[J]. 电源技术, 2021, 45(11): 1420-1423, 1509.
    [20]
    GUO F, ZHANG T B,SHI L M, et al. Precipitation of nanocrystalline LaH3 and Mg2Ni and its effect on de-/hydrogenation thermodynamics of Mg-rich alloys[J]. International Journal of Hydrogen Energy, 2020, 45: 32221-32233.
    [21]
    VARNAGIRIS S, URBONAVICIUS M. Hydrogen generation kinetics via hydrolysis of Mg2Ni and Mg2NiH4 powders[J]. International Journal of Hydrogen Energy, 2021, 46(73): 36323-36335.
    [22]
    TSUKUDA R, KOJIMA T, XU Y, et al. High catalytic activities of RENi5-xAlx (RE = La, Er) and low activity of Mg2Ni following hydrogen uptake: the role of absorbed hydrogen[J]. The Journal of Physical Chemistry C, 2021, 125(38): 20919-20929.
  • Related Articles

    [1]ZHU Wenjia, ZHAO Zhongmei, LONG Dengcheng, ZHANG Xin, QIN Junhu, LU Hongbo. Study on microstructure and properties of SnBi36Ag0.5Sbx solder alloy[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 536-542. DOI: 10.13264/j.cnki.ysjskx.2023.04.012
    [2]GUO Ziting, HUANG Jinchao, XIAO Qingmei, ZHONG Shengwen. Effect of composite conductive agent consisting of graphene and Super-P carbon black on the performance of LiNi0.5Co0.2Mn0.3O2 lithium-ion battery[J]. Nonferrous Metals Science and Engineering, 2023, 14(2): 227-234. DOI: 10.13264/j.cnki.ysjskx.2023.02.009
    [3]YU Xiangbiao, XIAO Jie, GUO Shaoyu, XIAO Yiyu, LIAO Chunfa, JIANG Pingguo. Study on the preparation of tungsten powder by hydrogen reduction of blue tungsten[J]. Nonferrous Metals Science and Engineering, 2021, 12(3): 35-41. DOI: 10.13264/j.cnki.ysjskx.2021.03.005
    [4]ZHAO Chaonan, ZHANG Wenqi, YANG Jiancheng, SHANG Zhitong, LIANG Tongxiang, LI Xiaocheng. Preparation and lithium-storage performance of attapulgite-derived Si@C composite[J]. Nonferrous Metals Science and Engineering, 2020, 11(3): 52-58. DOI: 10.13264/j.cnki.ysjskx.2020.03.007
    [5]ZHANG Binchao, HUANG Sinong, ZENG Minjing, LIN Shutao, ZHANG Linan, ZENG Yu, CHENG Yuanyuan, LONG Bei. Recovery of aerobic granular sludge in a sequencing batch reactor by inoculating stored granules with different storage methods[J]. Nonferrous Metals Science and Engineering, 2020, 11(2): 104-111. DOI: 10.13264/j.cnki.ysjskx.2020.02.015
    [6]TIAN Jian, LIU Zhen, WEI Longfu, YU Changlin. A visible-light-driven core-shell like Ag2S@Ag2CO3 heterojunction photocatalyst with high performance in pollutants degradation[J]. Nonferrous Metals Science and Engineering, 2017, 8(6): 23-35. DOI: 10.13264/j.cnki.ysjskx.2017.06.005
    [7]LUO Linshan, ZHOU Jian, WEN Xiaoqiang, LIU Wenwen, ZHOU Jian. Effect of Ti/Cr on hydrogen absorption/desorption properties of(VFe)50Ti26-xCr24+x(0≤x≤2.0)hydrogen storage alloys[J]. Nonferrous Metals Science and Engineering, 2016, 7(1): 20-23. DOI: 10.13264/j.cnki.ysjskx.2016.01.005
    [8]WANG Song, XIE Ming, LI Aikun, ZHU Gang, WANG Saibei, YANG Youcai, CHEN Song. Preparation and Performance Study of a New Type of Ag-CNTs Electrical Contact Material[J]. Nonferrous Metals Science and Engineering, 2015, 6(5): 40-44. DOI: 10.13264/j.cnki.ysjskx.2015.05.008
    [9]ZHONG Sheng-wen, LI Ming-xu, ZHANG Qian, ZENG Min, YANG Hai-yang. Research on high temperature storage performance of the lithium-rich manganese-based cathode material[J]. Nonferrous Metals Science and Engineering, 2013, 4(3): 45-48. DOI: 10.13264/j.cnki.ysjskx.2013.03.002
    [10]YU Chang-lin, ZHANG Cai-xia, CHEN Xi-rong, XIAO You-jun. The Effects of Zr on the Performance of Pt-Sn/γ-Al2O3 Catalyst for Catalytic Dehydrogenation[J]. Nonferrous Metals Science and Engineering, 2010, 1(01): 24-26, 48.

Catalog

    Article Metrics

    Article views (96) PDF downloads (14) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return