Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
ZHANG Xuehui, ZHANG Biao, ZHU Taiheng, WANG Cheng, YU Yinhong, CHEN Hao. Frictional wear behavior of tungsten heavy alloys 93W-4.9Ni-2.1Fe[J]. Nonferrous Metals Science and Engineering, 2016, 7(4): 33-39. DOI: 10.13264/j.cnki.ysjskx.2016.04.006
Citation: ZHANG Xuehui, ZHANG Biao, ZHU Taiheng, WANG Cheng, YU Yinhong, CHEN Hao. Frictional wear behavior of tungsten heavy alloys 93W-4.9Ni-2.1Fe[J]. Nonferrous Metals Science and Engineering, 2016, 7(4): 33-39. DOI: 10.13264/j.cnki.ysjskx.2016.04.006

Frictional wear behavior of tungsten heavy alloys 93W-4.9Ni-2.1Fe

More Information
  • Received Date: March 09, 2016
  • Published Date: August 30, 2016
  • Tungsten heavy alloys (W-4.9Ni-2.1Fe) were successfully prepared by high-energy ball milling (HEBM) and spark plasma sintering (SPS) technique, and the influence of milling time on microstructure and friction and wear behavior were studied. The results show that the Ni and Fe elements still exists in the form of simple substance phase when the milling time is 2 h. With prolonging the milling time, Ni (Fe) dissolves into the lattice of W and forms a supersaturated solid solution of W matrix, the W phase diffraction peak becomes increasingly wider and its intensity continues to decline. At the same time, the relative density of the sample decreases. Appropriate milling time (24 h) can not only ensure the content of binding phase and its uniform distribution, but also obtain the stability of the alloy composition by not introducing too much impurity element, and thus the wear resistance property of the alloy being the best.
  • [1]
    邹俭鹏, 张兆森. 真空烧结制备90W-Ni -Fe高密度钨合金的性能与显微结构[J]. 中国有色金属学报, 2013, 23(3): 703-710.
    [2]
    王广达, 杨海兵, 刘桂荣, 等. 高比重合金变形加工研究进展[J]. 粉末冶金技术, 2014, 32(3): 221-225. http://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201403012.htm
    [3]
    LI X Q, HU K, QU S G, et al. 93W-5.6Ni-1.4Fe heavy alloys with enhanced performance prepared by cyclic spark plasma sintering[J]. Materials Science and Engineering A, 2014, 599: 233-241. doi: 10.1016/j.msea.2014.01.089
    [4]
    KIRAN U R, PANCHAL A, SANKARANARAYANA M, et al. Effect of alloying addition and microstructural parameters on mechanical properties of 93 % tungsten heavy alloys[J]. Materials Science and Engineering A, 2015, 640: 82-90. doi: 10.1016/j.msea.2015.05.046
    [5]
    LU W R, GAO C Y, KE Y L. Constitutive modeling of two-phase metallic composites with application to tungsten-based composite 93W-4.9Ni-2.1Fe[J]. Materials Science and Engineering A, 2014, 592: 136-142. doi: 10.1016/j.msea.2013.11.007
    [6]
    范景莲,黄伯云,汪登龙,等. 纳米昌难熔金属高密度钨合金的研究现状及应用发展前景[J]. 粉末冶金技术, 2001(4): 238-241. http://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ200104013.htm
    [7]
    [8]
    HU K, LU X Q, QU S G, et al. Effect of heating rate on densification and grain growth during spark plasma sintering of 93W-5.6Ni-1.4Fe heavy alloys[J]. Metallurgical and Materials Transactions A, 2013, 44(9): 4323-4336. doi: 10.1007/s11661-013-1789-5
    [9]
    YAN J W, ZHOU J C, TIAN L, et al. Fabrication of nano-crystalline W-Ni-Fe alloy with Mo and rare earth element additives [J]. Transactions of Nonferrous Metals Society of China, 2005, 15(3): 571-576.
    [10]
    赵慕岳, 王伏生, 孙志雨. 我国钨基高比重合金发展的回顾[J]. 有色金属科学与工程, 2013, 4(5): 1-5. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=2013050001
    [11]
    MA Y Z, ZHANG J J, LIU W S, et al. Microstructure and dynamic mechanical properties of tungsten-based alloys in the form of extruded rods via microwave heating[J]. Internal Journal of Refractory Metals and Hard Materials, 2014, 42(1): 71-76. http://cn.bing.com/academic/profile?id=2026893821&encoded=0&v=paper_preview&mkt=zh-cn
    [12]
    XU Y G, WANG L L, WU Z W. Influence of the temperature on ultimate strength of 93WNiFe alloy[J]. Advanced Materials Research, 2013, (706/707/708): 134-137. http://cn.bing.com/academic/profile?id=1997930147&encoded=0&v=paper_preview&mkt=zh-cn
    [13]
    LU W R, GAO C Y, KE Y L. Constitutive modeling of two-phase metallic composites with application to tungsten-based composite 93W-4.9Ni-2.1Fe[J]. Materials Science and Engineering A, 2014, 592: 136-142. doi: 10.1016/j.msea.2013.11.007
    [14]
    LIU H Y, CAO S H, ZHU J, et al. Densification, microstructure and mechanical properties of 90W-4Ni-6Mn heavy alloy[J]. International Journal of Refractory Metals and Hard Materials, 2013(37): 121-126. http://cn.bing.com/academic/profile?id=2078330468&encoded=0&v=paper_preview&mkt=zh-cn
    [15]
    DURLU N, CALISKAN N K, BOR S. Effect of swaging on microstructure and tensile properties of W-Ni-Fe alloys[J]. International Journal of Refractory Metals and Hard Materials, 2014, 42(1): 126-131. http://cn.bing.com/academic/profile?id=2093522664&encoded=0&v=paper_preview&mkt=zh-cn
    [16]
    ZHANG X H, LI X X. Characteristics of alumina particles in dispersion-strengthened copper alloys[J]. International Journal of Minerals, Metallurgy and Materials, 2014, 21(11): 1115-1119. doi: 10.1007/s12613-014-1016-4
    [17]
    [18]
    张雪辉, 林晨光, 崔舜, 等. SPS制备Al2O3-弥散强化铜合金及其显微组织[J]. 材料热处理学报, 2013, 34(11): 1-5.
    [19]
    XIANG D P, DING L, LI Y Y, et al. Fabricating fine-grained tungsten heavy alloy by spark plasma sintering of low-energy ball-milling W-2Mo-7Ni-3Fe powders[J]. Materials Science and Engineering A, 2013, 578(31): 18-23. http://cn.bing.com/academic/profile?id=2067169324&encoded=0&v=paper_preview&mkt=zh-cn
    [20]
    SHONGWE M B, DIOUF S, DUROWOJU M O, et al. A comparative study of spark plasma sintering and hybrid spark plasma sintering of 93W-4.9Ni-2.1Fe heavy alloy[J]. International Journal of Refractory Metals and Hard Materials, 2015, 55: 16-23.
    [21]
    [22]
    XIANG D P, DING L, LI Y Y, et al. Preparation of fine-grained tungsten heavy alloys by spark plasma sintered W-7Ni-3Fe composite powders with different ball milling time[J]. Journal of Alloys and Compounds, 2013, 562(12): 19-24. http://cn.bing.com/academic/profile?id=1979782783&encoded=0&v=paper_preview&mkt=zh-cn
    [23]
    HE Y J, WINNUBST L, BURGGRAAF A J, et al. Grain-size dependence of sliding wear in tetragonal zirconia polycrystals[J]. Journal of the American Ceramic Society, 1996, 79(12): 3090-3096. doi: 10.1111/jace.1996.79.issue-12
    [24]
    ZUM G K H, BUNDSCHUH W, ZIMMERLIN B. Effect of grain size on friction and sliding wear of oxide ceramics[J]. Wear, 1993, 93 (162/163/164): 269-279. http://cn.bing.com/academic/profile?id=2083495836&encoded=0&v=paper_preview&mkt=zh-cn
  • Related Articles

    [1]ZHOU Wenwang, JIANG Chenxi, ZENG Danliang, WU Yibo, QIU Tingsheng, YU Wen. Study on preparation of MoSx@ZVI composite by carbothermal reduction synthesis and its treatment of acid orange G wastewater[J]. Nonferrous Metals Science and Engineering, 2023, 14(3): 407-415. DOI: 10.13264/j.cnki.ysjskx.2023.03.014
    [2]XIANG Zhongning, HE Qinchuan, WANG Yiqun, REN Lianggui. Synthesis and wave absorption properties of hollow SiC spherical nanoparticles[J]. Nonferrous Metals Science and Engineering, 2022, 13(1): 83-92. DOI: 10.13264/j.cnki.ysjskx.2022.01.011
    [3]HE Jiangfan, WU Peijia, GUANG Weixin, LI Xin, SHU Qing. Synthesis and selectivity of anode material La0.75Sr0.25Cr0.5Mn0.5O3-δ for solid oxide fuel cell[J]. Nonferrous Metals Science and Engineering, 2018, 9(5): 33-36, 48. DOI: 10.13264/j.cnki.ysjskx.2018.05.006
    [4]DONG Piaoping, XIE Xinrong, LIANG Fuyong, ZOU Zhenggang, WEN Herui. Synthesis and application of lanthanide-based metal-organic frameworks[J]. Nonferrous Metals Science and Engineering, 2016, 7(3): 137-150. DOI: 10.13264/j.cnki.ysjskx.2016.03.024
    [5]RAO Yunzhang, ZHANG Xueyan. Based on logistic regression model to determine the weight fuzzy comprehensive evaluation method in the application of the slope stability analysis[J]. Nonferrous Metals Science and Engineering, 2015, 6(6): 111-115. DOI: 10.13264/j.cnki.ysjskx.2015.06.020
    [6]GAO Jixing, GU Zhifeng, YANG Changshan, LUO Yanshen, TAN Yuhui, TANG Yunzhi. Synthesis, structures and properties of FeII, CoII - imidazolyl tetrazole compounds formed through in situ [2+3] synthesis[J]. Nonferrous Metals Science and Engineering, 2015, 6(5): 73-79. DOI: 10.13264/j.cnki.ysjskx.2015.05.014
    [7]FANG Wen, LI Jiade, YU Changlin. Application of rare earth to producing synthesis gas from the partial oxidation of methane[J]. Nonferrous Metals Science and Engineering, 2014, 5(6): 125-131. DOI: 10.13264/j.cnki.ysjskx.2014.06.022
    [8]CHAI Li-yuan, WANG Hai-tang, YOU Xiang-yu, WANG Qing-wei, SHU Yu-de. Thermodynamics equilibrium of M(Ⅱ)-S-H2O system[J]. Nonferrous Metals Science and Engineering, 2012, 3(5): 8-13. DOI: 10.13264/j.cnki.ysjskx.2012.05.020
    [9]YANG Yi-wen, CHEN Hui-zong. Catalytic Synthesis of N-amyl Acetate by RE Composite Solid Superacid SO42-/ZrO2- 2% Gd2O3[J]. Nonferrous Metals Science and Engineering, 2006, 20(2): 26-28.
    [10]LIAN Ping, LI Lei, YANG Yan-chao, WANG Ke-jun, LI Yong-xiu. Catalytic Synthesis of Sucrose Fatty Acid Ester with Rare Earth Solid Super Acid by Microwave Irradiation[J]. Nonferrous Metals Science and Engineering, 2005, 19(4): 36-39.

Catalog

    Article Metrics

    Article views (76) PDF downloads (4) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return