Citation: | ZHANG Xuehui, ZHANG Biao, ZHU Taiheng, WANG Cheng, YU Yinhong, CHEN Hao. Frictional wear behavior of tungsten heavy alloys 93W-4.9Ni-2.1Fe[J]. Nonferrous Metals Science and Engineering, 2016, 7(4): 33-39. DOI: 10.13264/j.cnki.ysjskx.2016.04.006 |
[1] |
邹俭鹏, 张兆森. 真空烧结制备90W-Ni -Fe高密度钨合金的性能与显微结构[J]. 中国有色金属学报, 2013, 23(3): 703-710.
|
[2] |
王广达, 杨海兵, 刘桂荣, 等. 高比重合金变形加工研究进展[J]. 粉末冶金技术, 2014, 32(3): 221-225. http://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201403012.htm
|
[3] |
LI X Q, HU K, QU S G, et al. 93W-5.6Ni-1.4Fe heavy alloys with enhanced performance prepared by cyclic spark plasma sintering[J]. Materials Science and Engineering A, 2014, 599: 233-241. doi: 10.1016/j.msea.2014.01.089
|
[4] |
KIRAN U R, PANCHAL A, SANKARANARAYANA M, et al. Effect of alloying addition and microstructural parameters on mechanical properties of 93 % tungsten heavy alloys[J]. Materials Science and Engineering A, 2015, 640: 82-90. doi: 10.1016/j.msea.2015.05.046
|
[5] |
LU W R, GAO C Y, KE Y L. Constitutive modeling of two-phase metallic composites with application to tungsten-based composite 93W-4.9Ni-2.1Fe[J]. Materials Science and Engineering A, 2014, 592: 136-142. doi: 10.1016/j.msea.2013.11.007
|
[6] |
范景莲,黄伯云,汪登龙,等. 纳米昌难熔金属高密度钨合金的研究现状及应用发展前景[J]. 粉末冶金技术, 2001(4): 238-241. http://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ200104013.htm
|
[7] |
逯庆国, 李明利, 周宇松, 等. W-Ni-Fe系纳米复合粉体的制备工艺研究[J]. 兵器材料科学与工程, 2011, 34(2): 90-92. http://www.baidu.com/link?url=Pj_8AqN9Vq8TnBSK_TqtKTpP1oc7BJU7qoUw8R7uiUzAa1fYlqwLTzkfCCYTk4xn5Jhy2qqoRV_pZTYRrGBtTxfOJgai6y7yBcUCrhBL-MlfrX-SxyfhPf5cXxtSIcvhMg0TlEDP6fXiTXcrX1Uq5bARk3p7H8arcVDRPN-vcxfdpW_Vmy36_3o6f0D-BgTtffgudCYU5nJukx0fByDnTxealpYGxkRXDdQVFE6-KiSenfsBglFCN_MAzp94zxMpeOVqUBwGLzGLbEQtstrBX9NYive1TFT-yxGFczX9WWRwrXMqMum9rGXBGeYJO54PVMbNt-_YDWq5IfuNfBfn6mGe881htc5j6qxQaQ04PwzGQ2PI7ORfBwuIXim-P_0g-rGi00hFdTjGa6YaPFKHXWTm-UkLqzutw-hR6qiQJji&wd=&eqid=975ae9d4000014ce000000055810434d
|
[8] |
HU K, LU X Q, QU S G, et al. Effect of heating rate on densification and grain growth during spark plasma sintering of 93W-5.6Ni-1.4Fe heavy alloys[J]. Metallurgical and Materials Transactions A, 2013, 44(9): 4323-4336. doi: 10.1007/s11661-013-1789-5
|
[9] |
YAN J W, ZHOU J C, TIAN L, et al. Fabrication of nano-crystalline W-Ni-Fe alloy with Mo and rare earth element additives [J]. Transactions of Nonferrous Metals Society of China, 2005, 15(3): 571-576.
|
[10] |
赵慕岳, 王伏生, 孙志雨. 我国钨基高比重合金发展的回顾[J]. 有色金属科学与工程, 2013, 4(5): 1-5. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=2013050001
|
[11] |
MA Y Z, ZHANG J J, LIU W S, et al. Microstructure and dynamic mechanical properties of tungsten-based alloys in the form of extruded rods via microwave heating[J]. Internal Journal of Refractory Metals and Hard Materials, 2014, 42(1): 71-76. http://cn.bing.com/academic/profile?id=2026893821&encoded=0&v=paper_preview&mkt=zh-cn
|
[12] |
XU Y G, WANG L L, WU Z W. Influence of the temperature on ultimate strength of 93WNiFe alloy[J]. Advanced Materials Research, 2013, (706/707/708): 134-137. http://cn.bing.com/academic/profile?id=1997930147&encoded=0&v=paper_preview&mkt=zh-cn
|
[13] |
LU W R, GAO C Y, KE Y L. Constitutive modeling of two-phase metallic composites with application to tungsten-based composite 93W-4.9Ni-2.1Fe[J]. Materials Science and Engineering A, 2014, 592: 136-142. doi: 10.1016/j.msea.2013.11.007
|
[14] |
LIU H Y, CAO S H, ZHU J, et al. Densification, microstructure and mechanical properties of 90W-4Ni-6Mn heavy alloy[J]. International Journal of Refractory Metals and Hard Materials, 2013(37): 121-126. http://cn.bing.com/academic/profile?id=2078330468&encoded=0&v=paper_preview&mkt=zh-cn
|
[15] |
DURLU N, CALISKAN N K, BOR S. Effect of swaging on microstructure and tensile properties of W-Ni-Fe alloys[J]. International Journal of Refractory Metals and Hard Materials, 2014, 42(1): 126-131. http://cn.bing.com/academic/profile?id=2093522664&encoded=0&v=paper_preview&mkt=zh-cn
|
[16] |
ZHANG X H, LI X X. Characteristics of alumina particles in dispersion-strengthened copper alloys[J]. International Journal of Minerals, Metallurgy and Materials, 2014, 21(11): 1115-1119. doi: 10.1007/s12613-014-1016-4
|
[17] |
梅雪珍, 贾成厂, 尹法章, 等. W-Ni-Fe高比重合金的SPS烧结行为[J]. 北京科技大学学报, 2007, 29(5): 475-478. http://www.baidu.com/link?url=ZXuhO8W-laAoTE7BifAK9Kx8fEDkS3hZ9W29EjTNsQTdjMqVbtJBLsjAZFgS1uFIyQ98UzVRbHoNcq1MqKK3mR-8rzj626ViUHQ3i0UXEL1jgvSSsxytcPHJLqwVbOpF5gpw5f3b6ndWxjhuRhMHIdiiiRqbwJh6cig0flmULOMpvmt--la8UGIyBhAeVjPQsa_3rLsio-WRh-UqawhwIs366-2MYZzP9oBVpxpG1ath5_fjVOeQW2rzmstPsmFdd9oJpXTts6R236BpQKR9vzfG1quF0hR9imM4662YEzVnz3xX0jNN5G_Awldnq-oRCbWHcImrFFu5I20qTAy4t7xM1EvpkPSHzJFdCHewy2E1jBIra13pEsmIp3rEHZVdLi42l_dvJdu4wBaJCyEJTK&wd=&eqid=db87395d00001ced00000005581043c2
|
[18] |
张雪辉, 林晨光, 崔舜, 等. SPS制备Al2O3-弥散强化铜合金及其显微组织[J]. 材料热处理学报, 2013, 34(11): 1-5.
|
[19] |
XIANG D P, DING L, LI Y Y, et al. Fabricating fine-grained tungsten heavy alloy by spark plasma sintering of low-energy ball-milling W-2Mo-7Ni-3Fe powders[J]. Materials Science and Engineering A, 2013, 578(31): 18-23. http://cn.bing.com/academic/profile?id=2067169324&encoded=0&v=paper_preview&mkt=zh-cn
|
[20] |
SHONGWE M B, DIOUF S, DUROWOJU M O, et al. A comparative study of spark plasma sintering and hybrid spark plasma sintering of 93W-4.9Ni-2.1Fe heavy alloy[J]. International Journal of Refractory Metals and Hard Materials, 2015, 55: 16-23.
|
[21] |
刘卫强,岳明,姜涛,等. 放电等离子烧结W-Ni-Fe合金的显微组织与性能研究[J]. 功能材料, 2004, 35(增刊1): 3019-3021. http://www.baidu.com/link?url=VXN_Zn5oInhEMR0dzyzEAM05oyCQa-Nx-NC5EOozKZA7k-dNvzcF300Rr8ucfTQHCQbN8eKtR4i9zRUmmGGMWOIVSy3XbQyb30MO96Sg1r81sSOsURNObvKzDNEiDhPSDQpbykNOqjWbHz1b4prg8DsZJYplEBUri-8kKx2VNkufSuD_4YgGpYn1-EpCxE3W8tha-dXcXIbsjXeICxn36D7rI_yKjt_IVdvuOjLyPwGG8qC3x43Xk2vdM1Cyr9teI1hraNA5FF_PHl_SZ53OauVuKz5rw2yl5sV6TUsj5OT61rYjktfQ_5_8bhJ8tuZzuHEKhgD6X_IO6gTlJ3zBQlwPf0M_kEVMhADhQWIFJqmveU-do5gavBqoUrT1gg8JawAWYyyjqnBnahM09kaWRnEfukJhRBLA4c5Kn5Vlqt6QKe1kVC8AJnEKiX2D-0E6XkslgRlxL1IoS8pANUuKLVqfW0FIvvLOHmDFU95dLna&wd=&eqid=d10759bb0000259a000000055810441e
|
[22] |
XIANG D P, DING L, LI Y Y, et al. Preparation of fine-grained tungsten heavy alloys by spark plasma sintered W-7Ni-3Fe composite powders with different ball milling time[J]. Journal of Alloys and Compounds, 2013, 562(12): 19-24. http://cn.bing.com/academic/profile?id=1979782783&encoded=0&v=paper_preview&mkt=zh-cn
|
[23] |
HE Y J, WINNUBST L, BURGGRAAF A J, et al. Grain-size dependence of sliding wear in tetragonal zirconia polycrystals[J]. Journal of the American Ceramic Society, 1996, 79(12): 3090-3096. doi: 10.1111/jace.1996.79.issue-12
|
[24] |
ZUM G K H, BUNDSCHUH W, ZIMMERLIN B. Effect of grain size on friction and sliding wear of oxide ceramics[J]. Wear, 1993, 93 (162/163/164): 269-279. http://cn.bing.com/academic/profile?id=2083495836&encoded=0&v=paper_preview&mkt=zh-cn
|
[1] | ZHANG Tingrui, WANG Mengjun, ZHEN Jinhui, FENG Zexi. High-temperature friction of Al-Zn-Mg alloy[J]. Nonferrous Metals Science and Engineering, 2022, 13(2): 76-81. DOI: 10.13264/j.cnki.ysjskx.2022.02.010 |
[2] | SUN Ke, LIU Jinping, WANG Jing. Study on the microstructure and properties of nickel-doped graphite-copper composites prepared by spark plasma sintering[J]. Nonferrous Metals Science and Engineering, 2020, 11(3): 65-72. DOI: 10.13264/j.cnki.ysjskx.2020.03.009 |
[3] | ZHANG Qinying, CHEN Hao, REN Xingrun, WEN Yan. Effect of Al target sputtering power on themicrostructure and tribological properties of CrAlN coatings[J]. Nonferrous Metals Science and Engineering, 2017, 8(5): 109-114. DOI: 10.13264/j.cnki.ysjskx.2017.05.016 |
[4] | LIU Wenyang, ZHANG Jianbo, WU Shanjiang, HU Meijun, CHEN Tingting, GUO Lili. Effects of Si on friction properties of Ti3SiC2/Al composites[J]. Nonferrous Metals Science and Engineering, 2017, 8(5): 89-94. DOI: 0.13264/j.cnki.ysjskx.2017.05.013 |
[5] | WANG Qi, JIAO Shuqiang, ZHU Hongmin, ZHAO Shiqiang. SPS sintering of amorphous nano-sized Si2N2O powders and characterization of its sintered bulks[J]. Nonferrous Metals Science and Engineering, 2017, 8(5): 58-63. DOI: 10.13264/j.cnki.ysjskx.2017.05.008 |
[6] | HUANG Zhu, LIU Meixia, LI Tianbai, ZHANG Xuehui, CHEN Hao. Friction and wear properties of electro-deposited Ni-W-WC composite coatings[J]. Nonferrous Metals Science and Engineering, 2016, 7(3): 66-70. DOI: 10.13264/j.cnki.ysjskx.2016.03.012 |
[7] | Liu Long, Zhou Shengguo, Wang Yuechen, Liu ZhengBing, Ma LiQiu. Microstructures and tribological properties of a-C:H film prepared by DC reactive magnetron sputtering[J]. Nonferrous Metals Science and Engineering, 2016, 7(1): 41-47. DOI: 10.13264/j.cnki.ysjskx.2016.01.009 |
[8] | WANG Chunting, YE Yuwei, HU Jianmin, CHEN Hao, WANG Yongxin, LI Jinlong. Tribological performances of CrCN coatings under different deposition temperatures[J]. Nonferrous Metals Science and Engineering, 2015, 6(2): 42-47. DOI: 10.13264/j.cnki.ysjskx.2015.02.008 |
[9] | LI Yong, LIU Rui-qing, XU Fang. Tribological Behaviors of Cu-Ag-Fe Alloy Carrying Electric Current[J]. Nonferrous Metals Science and Engineering, 2011, 2(3): 18-22. |
1. |
侯宏英,贾彦鹏,李俊凯,兰建,陈方淑. 石墨烯生产废液中双球状碳酸锰的提取及其电化学储锂性能. 有色金属科学与工程. 2024(01): 8-14 .
![]() | |
2. |
刘力,杨天辉,周曦,孟冉浩. 氢化物对Mg_2Ni基合金储氢性能的影响. 有色金属科学与工程. 2023(06): 825-832 .
![]() | |
3. |
胡海燕,武源波,刘益峰,唐瑞仁,吴雄伟,肖遥. 基于铝氧键稳定的隧道型钠离子电池正极材料. 有色金属科学与工程. 2022(02): 59-66 .
![]() | |
4. |
张露,黄彬琪,王艳阳,龙腾威,刘嘉铭. 分级结构MoO_2/C微球作为高性能锂离子电池负极材料研究. 江西冶金. 2022(05): 31-35 .
![]() | |
5. |
文敏,徐子其,张克,李轩,胡君辉,罗虹,尹艳红. 氧化钨/碳纳米管膜复合负极的制备及其储锂性能. 有色金属科学与工程. 2021(04): 58-65 .
![]() | |
6. |
李基铭,覃慧,刘嘉铭. 水热法制备V_2O_5作为高性能锂离子电池正极材料. 有色金属(冶炼部分). 2021(11): 79-84 .
![]() |