Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
DAI Pengfei, ZHANG Bin, LI Xianjun, YIN Yiming, WU Yikang, LI Mingzhou. Experimental study on air-quenching granulation of high-temperature copper slag and numerical simulation of cooling and solidification process of copper slag droplet[J]. Nonferrous Metals Science and Engineering, 2024, 15(5): 650-659. DOI: 10.13264/j.cnki.ysjskx.2024.05.003
Citation: DAI Pengfei, ZHANG Bin, LI Xianjun, YIN Yiming, WU Yikang, LI Mingzhou. Experimental study on air-quenching granulation of high-temperature copper slag and numerical simulation of cooling and solidification process of copper slag droplet[J]. Nonferrous Metals Science and Engineering, 2024, 15(5): 650-659. DOI: 10.13264/j.cnki.ysjskx.2024.05.003

Experimental study on air-quenching granulation of high-temperature copper slag and numerical simulation of cooling and solidification process of copper slag droplet

More Information
  • Received Date: July 30, 2023
  • Revised Date: October 12, 2023
  • In order to explore the feasibility of air-quenching high-temperature copper slag and investigate the influence of liquid viscosity on granulation, an experimental device was built to compare the granulation effectiveness of water, machine oil and liquid wax. The results show that the shape of liquid drops is closer to the sphere, and size distribution is more uniform with increasing liquid viscosity. Solidified wax granular has a narrow size distribution, which is beneficial for secondary the recovery of waste heat. Simulation of cooling and solidification of a single high-temperature copper slag droplet was carried out by using fluid volume function models (VOF), solidification melting model and radiation model (DO). The results indicate that the copper slag droplet with a diameter of 2 mm and temperature of 1 355 K can form a shell quickly and solidify completely after 1.62 s when cooled by air at room temperature of 300 K. The cooling rate at the windward side of the droplet is higher than the leeward side during the cooling process, which will result in uneven solidification. High-velocity airflow has a stronger cooling ability, which can lead to a faster solidification rate of the droplet. Heat transfer efficiency will be higher, and solidification time will be shortened with a decrease in initial droplet size.

  • [1]
    姚志超, 孙彦文. 中国铜工业现状与技术展望[J]. 中国资源综合利用, 2019, 37(7): 103-105.
    [2]
    吕义文, 朱恂, 王宏, 等. 高温液态熔渣离心粒化余热回收技术[J]. 中国基础科学, 2020, 22(2): 28-35,42.
    [3]
    RAHIMI M, YAZDANPARAST S. REZAI P Y. Parametric study of droplet size in an axisymmetric flow-focusing capillary device[J]. Chinese Journal of Chemical Engineering, 2020, 28(4): 1016-1022.
    [4]
    SURIP W, PUTRA N, ANTARIKSAWAN A R. Design of passive residual heat removal systems and application of two-phase thermosyphons: A review[J]. Progress in Nuclear Energy, 2022, 154: 104473.
    [5]
    ROGACHEV S O, PRIUPOLIN D V. Effect of a thermal hardening method on the structure and mechanical properties of 20GL steel[J]. Russian Metallurgy (Metally), 2022, 2022(10): 1312-1317.
    [6]
    邱琳, 桑大伟, 冯妍卉, 等. 高炉熔渣流化床余热回收的优化分析[J]. 工程热物理学报, 2019, 40(5): 1086-1094.
    [7]
    纪慧敏, 黄友亮, 仪垂杰, 等. 高炉渣干式离心粒化机理及实验研究[J]. 中国粉体技术, 2020, 26(2): 63-69.
    [8]
    邱勇军, 朱恂, 王宏, 等. 熔渣颗粒空冷相变换热的三维数值模拟[J]. 化工学报, 2014, 65(增刊1): 340-345.
    [9]
    王丽丽, 客海滨, 王立梅. 气淬高炉渣颗粒凝固行为数值模拟[J]. 唐山学院学报, 2022, 35(6): 35-40.
    [10]
    王子兵, 刘跃, 张玉柱, 等. 高炉熔渣气淬粒化热量回收试验研究[J]. 钢铁钒钛, 2018, 39(4): 93-98.
    [11]
    杜宇航, 刘晓宏, 温治, 等. 高炉渣液滴破碎过程数值模拟[J]. 材料与冶金学报, 2023, 22(1): 23-29.
    [12]
    PENG H, HU Z W, SHAN X K, et al. Study on the solidification characteristics of molten slag droplets cooled by mixed cooling medium[J]. Applied Thermal Engineering, 2019, 149: 939-949.
    [13]
    王绍文, 梁富智, 王纪曾. 固体废弃物资源化技术与应用[M]. 北京: 冶金工业出版社, 2003.
    [14]
    WANG L L, ZHANG Y Z, LONG Y. Numerical investigation of breakup process of molten blast furnace slag through air quenching dry granulation technique[J]. Journal of Iron and Steel Research International, 2021, 28(1): 10-18.
    [15]
    雷星, 甄新刚, 张炯明. 475 mm特厚板坯连铸结晶器浸入式水口优化数值模拟研究[J]. 江西冶金, 2023, 43(6): 457-464.
    [16]
    ZHANG B, ZHOU J M, LI M, et al. Modeling and simulation of iron ore sintering process with consideration of granule growth[J]. ISIJ International, 2018, 58(1): 17-24.
    [17]
    谭金池, 张斌, 袁富, 等. 板坯连铸结晶器三维流场模拟仿真研究[J]. 江西冶金,2020, 40(6): 11-15.
    [18]
    戴志海, 张斌, 彭金鹏, 等. 底吹炼铜熔池液面波动数值模拟[J]. 有色金属科学与工程, 2021, 12(6): 9-16,41.
    [19]
    袁启盛, 张斌, 戴志海, 等. 底吹炼铜喷口区多相流动特性数值模拟研究[J]. 世界有色金属, 2021(2): 6-10.
    [20]
    彭金鹏, 詹佳鑫, 张斌, 等. 铜底吹熔池熔炼炉多相流数值模拟[J]. 有色金属科学与工程, 2023, 14(3): 318-328.
    [21]
    文棠根, 张斌, 张家微, 等. 6 kA 稀土钕电解槽多相流动数值模拟[J].有色金属科学与工程, 2023, 14(5): 706-715.
    [22]
    常庆明, 程永楷, 李先旺, 等. 高炉渣干式离心粒化的建模仿真研究[J]. 钢铁钒钛, 2014, 35(1): 69-73,78.
    [23]
    ZHANG B, ZHOU J M, LI M. Prediction of sinter yield and strength in iron ore sintering process by numerical simulation[J], Applied Thermal Engineering, 2018, 131: 70-79.
    [24]
    杨世铭, 陶文铨. 传热学[M]. 4版. 北京: 高等教育出版社, 2006.
  • Related Articles

    [1]YAO Mingcan, LI Tianyu, HU Jin, FU Fangzhong, LIN Jiahao, FAN Helin, WANG Ruixiang, XU Zhifeng. Structure and transport properties of FeO-SiO2 melt[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 17-24. DOI: 10.13264/j.cnki.ysjskx.2025.01.003
    [2]SU Yao, GUO Hanjie, GUO Jing, LUO Yiwa, LI Gang, YANG Qingsong, ZHENG Xiaodan. Effect of Ti content on solidification organization and non-metallic inclusions in 0Cr25Al5 electrothermal alloy[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 8-16. DOI: 10.13264/j.cnki.ysjskx.2025.01.002
    [3]GUO Hao, WANG Yajie, ZHAO Hongbo, ZUO Haibin. Numerical simulation of pulverized coal forming process[J]. Nonferrous Metals Science and Engineering, 2024, 15(3): 357-363. DOI: 10.13264/j.cnki.ysjskx.2024.03.006
    [4]HU Yujun, ZHANG Yinghui, AI Di, ZHANG Bing, KUANG Junping. Research on process parameters of CuSi3Mn alloy under upward continuous casting[J]. Nonferrous Metals Science and Engineering, 2023, 14(6): 833-842. DOI: 10.13264/j.cnki.ysjskx.2023.06.011
    [5]XIE Fanghao, LI Jianan, DENG Shenghua, LI Weirong. The microstructure and mechanical properties of selective laser melted Al-Zn-Mg-Sc alloy[J]. Nonferrous Metals Science and Engineering, 2022, 13(4): 61-69. DOI: 10.13264/j.cnki.ysjskx.2022.04.008
    [6]NIE Jincheng, YE Jieyun, WANG Zhigang, HE Xiaoxuan, CHEN Zihui. Casting process optimization of martensitic stainless steel baffle based on ProCAST numerical simulation[J]. Nonferrous Metals Science and Engineering, 2020, 11(6): 27-33. DOI: 10.13264/j.cnki.ysjskx.2020.06.004
    [7]CHEN Tao, LIU Zheng, CHEN Zhiping, ZHANG Jiayi. Effect of electromagnetic stirring way and rare earth on solidification structure of semi-solid A356 alloy[J]. Nonferrous Metals Science and Engineering, 2017, 8(5): 76-82. DOI: 10.13264/j.cnki.ysjskx.2017.05.011
    [8]CHEN Fei, SONG Bo, YANG Zhanbing, LI Zhenxiang. Optimum simulation of velocity field and temperature field of horizontal passage of ISA waste heat boiler[J]. Nonferrous Metals Science and Engineering, 2016, 7(4): 1-8. DOI: 10.13264/j.cnki.ysjskx.2016.04.001
    [9]FENG Kai, ZHONG Jian-hua, TANG Zhi-li. The 3-D numerical simulation of heat transfer process for multi-start spiral pipe[J]. Nonferrous Metals Science and Engineering, 2012, 3(3): 95-98. DOI: 10.13264/j.cnki.ysjskx.2012.03.006
    [10]CUI Dong-liang, LI Xi-bing, ZHAO Guo-ya. Analysis of the Numerical Simulation to Structure Parameter of Hard-To-Mine Ore Body in Xincheng Gold Mine[J]. Nonferrous Metals Science and Engineering, 2006, 20(3): 13-17.

Catalog

    Article Metrics

    Article views (49) PDF downloads (7) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return