Citation: | YAO Mingcan, LI Tianyu, HU Jin, FU Fangzhong, LIN Jiahao, FAN Helin, WANG Ruixiang, XU Zhifeng. Structure and transport properties of FeO-SiO2 melt[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 17-24. DOI: 10.13264/j.cnki.ysjskx.2025.01.003 |
In view of the loss of copper in the process of copper smelting, molecular dynamics simulations were used to study the structure and transport properties of the FeO-SiO2 system. The results show that when FeO mass fraction increases from 50% to 85%, the bond length of Si-O remains unchanged at 1.60 Å, and the bond length of Fe-O decreases from 2.08 Å to 2.07 Å. The O-Si-O bond angle remains unchanged at 108.00°, while the Si-O-Si bond angle decreases from 144.98° to 140.00°. The proportion of free oxygen increases from 1.74% to 42.64%, and the proportion of bridge oxygen decreases from 42.60% to 1.84%. The degree of polymerization of the structure decreases with the increase in FeO content, and the NBO/T decreases from 2.42 to 0.25. The viscosity decreases from 0.74 Pa·s to 0.02 Pa·s. The [SiO4]4- tetrahedra are the main structural units of the FeO-SiO2 system, and the [SiO4]4- tetrahedra are connected by a common vertex angle.
[1] |
翟秀静,谢锋.重金属冶金学[M]. 2版. 北京:冶金工业出版社, 2019.
|
[2] |
PHIRI T C, SINGH P, NIKOLOSKI A N. The potential for copper slag waste as a resource for a circular economy: a review - partⅡ[J]. Minerals Engineering, 2021, 172: 107150.
|
[3] |
凌云汉.从炼铜炉渣中提取有价金属[J].化工冶金, 1999, 20(2): 220-224.
|
[4] |
ATAFALLAH M, TAUFIQ H, Peter H, et al. Experimental investigation of gas/slag/matte/tridymite equilibria in the Cu-Fe-O-S-Si system in controlled atmospheres: development of technique[J]. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2017, 48(6): 3002-3016.
|
[5] |
SANTHY K, SOWMYA T, RAMAN S. Effect of oxygen to silicon ratio on the viscosity of metallurgical slags[J]. ISIJ International, 2006, 45(7): 1014-1018.
|
[6] |
HOU X, XIAO G Q, DING D H, et al. Effects of Cr2O3 content on viscosity and microstructure of copper converter slag[J]. Journal of Non-Crystalline Solids, 2021, 574: 121147.
|
[7] |
SHIRAISHI Y, IKENDA K, TAMURA A, et al. Viscosity and density of molten FeO-SiO2 system [J]. Transactions of the Japan Institute of Metals, 1978, 19(5): 264-274.
|
[8] |
CHEN M, RAGUNATH S, ZHAO B J. Viscosity Measurements of FeO-SiO Slag in Equilibrium with Metallic Fe[J]. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2013, 44(3): 506-515.
|
[9] |
ZHANG H W, FU L, QI J B, et al. Physicochemical properties of the molten iron-rich slags related to the copper recovery[J]. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2019, 50(4): 1852-1861.
|
[10] |
ZHANG H W, SUN F, SHI X Y, et al. The viscous and conductivity behavior of melts containing iron oxide in the FeOt-SiO2-CaO-Cu2O system for copper smelting slags[J]. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2012, 43(5): 1046-1053.
|
[11] |
PARK H S, PARK S S, SOHN I. The viscous behavior of FeOt-Al2O3-SiO2 copper smelting slags[J]. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2011, 42(4): 692-699.
|
[12] |
苏凤来,杨必文,张登高,等.刚果(金)某氧化铜精矿还原熔炼渣物化性能研究[J].中国有色金属学报, 2021(6): 18-24.
|
[13] |
徐翔,刘大方,李博.添加剂CaO、Al2O3和Cu2O对铜渣黏度的影响[J].中国有色冶金, 2021, 50(2): 14-19.
|
[14] |
FAN H L, WANG R X, DUAN H M, et al. Structural and transport properties of TiO2-SiO2-MgO-CaO system through molecular dynamics simulations[J]. Journal of Molecular Liquids, 2021, 325: 115226.
|
[15] |
佟志芳,肖成,魏战龙.分子动力学模拟及其在冶金炉渣中的应用研究[J].有色金属科学与工程,2016,7(3): 15-19.
|
[16] |
TUHEEN M, SUN W, DU J C. Effect of iron redox ratio on the structures of boroaluminosilicate glasses[J]. Journal of the American Ceramic Society, 2022, 105(12): 7272-7290.
|
[17] |
DENG L, DU J C. Development of boron oxide potentials for computer simulations of multicomponent oxide glasses[J]. Journal of the American Ceramic Society, 2019, 102(5): 2482-2505.
|
[18] |
SHIMIZU N, KUSHIRO I. Diffusivity of oxygen in jadeite and diopside melts at high pressures[J]. Geochimica et Cosmochimica Acta, 1984, 48(6): 1295-1303.
|
[19] |
REID J E, POE B T, DAVID C, et al. The self-diffusion of silicon and oxygen in diopside liquid up to 15 GPa[J]. Chemical Geology, 2001, 174(1): 77-86.
|
[20] |
PEYS A, WHITE C E , OLDS D, et al. Molecular structure of CaO-FeOx-SiO2 glassy slags and resultant inorganic polymer binders[J]. Journal of the American Ceramic Society, 2018, 101(12): 5846-5857.
|
[21] |
ZHANG Z, XIE B, ZHOU W, et al. Structural characterization of FeO-SiO2-V2O3 slags using molecular dynamics simulations and FT-IR spectroscopy[J]. ISIJ International, 2016, 56(5): 828-834.
|
[22] |
SEO W G, TSUKIHASHI F. Thermodynamic and structural properties for the FeO-SiO2 system by using molecular dynamics calculation[J]. Materials Transactions, 2005, 46(6): 1240-1247.
|
[23] |
DIAO J, KE Z Q, JIANG L, et al. Structural properties of molten CaO-SiO2-P2O5-FeO system[J]. High Temperature Materials and Process, 2017, 36(9): 871-876.
|
[24] |
WU T, WANG Q, YU C F, et al. Structural and viscosity properties of CaO-SiO2-Al2O3-FeO slags based on molecular dynamic simulation[J]. Journal of Non-Crystalline Solids, 2016, 450: 23-31.
|
[25] |
MA S F, LI K J, ZHANG J L, et al. Structural characteristics of CaO-SiO2-Al2O3-FeO slag with various FeO contents based on molecular dynamics simulations[J]. JOM, 2021, 73(6): 1637-1645.
|
[26] |
MA S F, LI K J, ZHANG J L, et al. The effects of CaO and FeO on the structure and properties of aluminosilicate system: A molecular dynamics study[J]. Journal of Molecular Liquids, 2021, 325: 115106.
|
[27] |
SIAKATI C, MACCHIERALDO R, KIRCHNER B, et al. Unraveling the nano-structure of a glassy CaO-FeO-SiO2 slag by molecular dynamics simulations[J]. Journal of Non-Crystalline Solids, 2020, 528: 119771.
|
[28] |
WASEDA Y, SHIRAISHI Y, TOGURI J M. The structure of the molten FeO-Fe2O3-SiO2 system by X-ray diffraction[J]. Transactions of the Japan Institute of Metals, 1980, 21(1): 51-62.
|
[29] |
WASEDA Y, TOGURI J M. The structure of the molten FeO-SiO2 system[J]. Metallurgical Transactions B, 1978, 9(4): 595-601.
|
[30] |
FAN H L, WANG R X, XU Z F, et al. Structural and transport properties of FeO-TiO2-SiO2 systems: Insights from molecular dynamics simulations[J]. Journal of Non-Crystalline Solids, 2021, 571: 121049.
|
[31] |
LI K J, BOUHADJA M, KHANNA R, et al. Influence of SiO2 reduction on the local structural order and fluidity of molten coke ash in the high temperature zone of a blast furnace. a molecular dynamics simulation investigation[J]. Fuel, 2016, 186:561-570.
|
[32] |
BAUCHY M. Structural, vibrational, and thermal properties of densified silicates: Insights from molecular dynamics[J]. The Journal of Chemical Physics, 2012, 137(4): 044510.
|
[33] |
PACAUD F, DELAYE J M, CHARPENTIER T, et al. Structural study of Na2O-B2O3-SiO2 glasses from molecular simulations using a polarizable force field[J]. Journal of Non-Crystalline Solids, 2017, 499: 371-379.
|
[1] | LIAN Baidong, QIAO Dengpan, YANG Tianyu, WANG Jun, CHEN Jian, LI Shaoteng, LI Yongming, GAO Bo, LONG Gan. Research on pipeline transportation design of tailings slurry from a tin mine in Yunnan Province based on ANSYS-FLUENT[J]. Nonferrous Metals Science and Engineering, 2024, 15(3): 407-421. DOI: 10.13264/j.cnki.ysjskx.2024.03.011 |
[2] | TONG Zhifang, WANG Jiaxing, XU Congcong, XIE Zhaoxun. Effects of TiO2 and alkalinity on viscosity and structure of CaO-MgO-Al2O3-SiO2-Cr2O3-Fe2O3-TiO2 slag system and solubility of chromium oxide[J]. Nonferrous Metals Science and Engineering, 2024, 15(3): 332-341. DOI: 10.13264/j.cnki.ysjskx.2024.03.003 |
[3] | SUN Kailei, WANG Xu, CAI Boqing, LIAO Chunfa, SHI Zhongning. Molecular dynamics simulation evaluation on viscosity of typical alkali metal fluorine salts[J]. Nonferrous Metals Science and Engineering, 2023, 14(1): 24-29. DOI: 10.13264/j.cnki.ysjskx.2023.01.004 |
[4] | MA Junqi, TAO Xingzhen, PENG Lin, XIE Yufei. Crack detection and recognition based on improved BiSeNetV2[J]. Nonferrous Metals Science and Engineering, 2022, 13(6): 91-97. DOI: 10.13264/j.cnki.ysjskx.2022.06.012 |
[5] | LENG Xinwei, TANG Hao, LIAO Chunfa, WANG Xu. Investigation on viscosity of electrolysis system for preparing Al-Cu-Y alloy via molten salt electrolysis[J]. Nonferrous Metals Science and Engineering, 2019, 10(5): 8-11. DOI: 10.13264/j.cnki.ysjskx.2019.05.002 |
[6] | ZHONG Huaiyu, CHENG Boming, LUO Jiangbin, ZHONG Shengwen. Effect of viscosity of vathode slurry on automotive power battery[J]. Nonferrous Metals Science and Engineering, 2018, 9(2): 56-61. DOI: 10.13264/j.cnki.ysjskx.2018.02.010 |
[7] | GUO Xueyi, WANG Songsong, WANG Qinmeng, TIAN Qinghua. Development and application of oxygen bottom blowing copper smelting simulation software SKSSIM[J]. Nonferrous Metals Science and Engineering, 2017, 8(4): 1-6. DOI: 10.13264/j.cnki.ysjskx.2017.04.001 |
[8] | HU Min, CHEN Min, LUO Yan, LIU Xiaoqiu. Effect of thermal spray coatings of WC-Co on the stress in jaw crusher tooth plate[J]. Nonferrous Metals Science and Engineering, 2016, 7(6): 83-87. DOI: 10.13264/j.cnki.ysjskx.2016.06.0014 |
[9] | LI Ming-zhou, HUANG Jin-di, TONG Chang-ren, ZHANG Wen-hai. A composition soft-sensing model of FeO-Fe2O3-SiO2 ternary slag system based on two-temperature two-density method[J]. Nonferrous Metals Science and Engineering, 2016, 7(5): 37-41. DOI: 10.13264/j.cnki.ysjskx.2016.05.007 |
[10] | ZHAO Yun-cai, LEI Fa-cheng. Strength Analysis of Ceramic Filter's Rotary Vacuum Based on ANSYS[J]. Nonferrous Metals Science and Engineering, 2009, 23(3): 42-45. |