Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
HU Yujun, ZHANG Yinghui, AI Di, ZHANG Bing, KUANG Junping. Research on process parameters of CuSi3Mn alloy under upward continuous casting[J]. Nonferrous Metals Science and Engineering, 2023, 14(6): 833-842. DOI: 10.13264/j.cnki.ysjskx.2023.06.011
Citation: HU Yujun, ZHANG Yinghui, AI Di, ZHANG Bing, KUANG Junping. Research on process parameters of CuSi3Mn alloy under upward continuous casting[J]. Nonferrous Metals Science and Engineering, 2023, 14(6): 833-842. DOI: 10.13264/j.cnki.ysjskx.2023.06.011

Research on process parameters of CuSi3Mn alloy under upward continuous casting

More Information
  • Received Date: February 18, 2023
  • Revised Date: March 24, 2023
  • Available Online: December 28, 2023
  • CuSi3Mn alloy is an excellent welding material that can be used for welding dissimilar metals between copper and steel. However, it has some problems such as, a wide solidification temperature range, high viscosity, surface cracks, pits, broken rods in the production of upward continuous casting. In this paper, ProCast finite element method software was used to numerically simulate the upward continuous casting forming process of the CuSi3Mn alloy rod. The influence laws of alloy composition, die structure, casting temperature and casting speed on the depth of the mushy zone and solidification microstructure during the solidification process were systematically investigated. The results showed that decreasing the Si content, but increasing the Mn content and casting speed was beneficial to refine grain and increase the equiaxed crystal ratio. Reducing the first cold zone height and the die thickness but increasing the casting temperature could reduce the depth of the mushy zone, which was conducive to the stable growth of the solidified structure. However, the equiaxed crystal ratio decreased with the increasing of grain size. Finally, the CuSi3Mn alloy rod with qualified quality could be successfully produced, when its Si content was 2.8%‒3.0% (mass percentage) and Mn content 1.0%‒1.2% (mass percentage), with No.4 die used, the casting speed of 4‒5 mm/s and casting temperature of 1040‒1140 ℃.
  • [1]
    MUHAMMAD N A, WU C S. Ultrasonic vibration assisted friction stir welding of aluminium alloy and pure copper[J]. Journal of Manufacturing Processes, 2019, 39: 114-127.
    [2]
    李玉龙, 杨泓, 刘冠鹏, 等. 铜/钢爆炸焊接头界面组织及力学性能研究[J]. 材料科学与工艺, 2020, 28(1): 39-45.
    [3]
    CHANG C C, WU L H, SHUEH C, et al. Evaluation of microstructure and mechanical properties of dissimilar welding of copper alloy and stainless steel[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91(5): 2217-2224.
    [4]
    于海平, 范治松, 赵岩, 等.紫铜-碳钢磁脉冲焊接接头界面形貌研究[J].材料科学与工艺, 2015, 23(3): 1-6.
    [5]
    WANG Y X, LI X J, WANG X H, et al. Fabrication of a thick copper-stainless steel clad plate for nuclear fusion equipment by explosive welding[J]. Fusion Engineering and Design, 2018, 137: 91-96.
    [6]
    张秉刚. 异种金属电子束焊接技术在发动机制造中的应用[J]. 中国表面工程, 2016, 29(5): 2.
    [7]
    李佳, 冉令坤, 汪维登, 等. 焊丝成分对汽车车身外观焊缝耐腐蚀性的影响[J]. 热加工工艺, 2022, 51(7): 110-113.
    [8]
    CHEN J S, XIAO X P, YUAN D W, et al. Microstructure and properties of Cu-Cr-Zr alloy with columnar crystal structure processed by upward continuous casting[J]. Journal of Alloys and Compounds, 2021, 889: 161700.
    [9]
    HUA S M, ZHANG P Z, LIU Z L, et al. Numerical simulation of the solidification process of Cu-0.45% Sn alloy in upward continuous casting[J]. Materials Research Express, 2021, 8(9): 096532.
    [10]
    WANG Z H, LUO S, WANG W L, et al. Numerical Simulation of Solidification Structure of Continuously Cast Billet with Grain Motion[J]. Metallurgical and Materials Transactions B, 2020, 51(6): 2882-2894.
    [11]
    WANG X H, YU Z M. Numerical simulation of solidification structure of continuously cast bloom of steel 20CrNiMo[J]. Metallurgy, 2019, 58(3/4): 183-186.
    [12]
    孟祥宁, 崔磊, 朱苗勇. 元胞自动机模拟钢凝固组织演化研究进展[J]. 中南大学学报(自然科学版), 2022, 53(2): 387-397.
    [13]
    聂金成, 叶洁云, 汪志刚, 等. 基于ProCAST数值模拟的马氏体不锈钢折流器铸造工艺优化[J]. 有色金属科学与工程, 2020, 11(6): 27-33.
    [14]
    DUBEY S, SWAIN S R. Numerical investigation on solidification in casting using ProCAST[J]. IOP Conference Series: Materials Science and Engineering, 2019, 561(1): 012049.
    [15]
    刘文文, 黄华贵. 双辊铸轧热-流-组织耦合模拟及铸轧区组织精细分析[J]. 材料热处理学报, 2021, 42(7): 126-133.
    [16]
    WANG J L, WANG F M, ZHAO Y Y, et al. Numerical simulation of 3d-microstructures in solidification processes based on the CAFE method[J]. International Journal of Minerals, Metallurgy and Materials, 2009, 16(6): 640-645.
    [17]
    潘德清, 李道喜, 牛冬鑫, 等. 气隙热阻对水平连铸Cu-15Ni-8Sn合金组织和成分分布影响[J]. 特种铸造及有色合金, 2020, 40(1): 69-74.
    [18]
    杨庆宝, 王兰浩, 曾浩, 等. Cu-Sn合金上引连铸凝固组织数值模拟[J]. 铸造技术, 2022, 43(2): 123-130.
    [19]
    胡鹏, 李军, 李建国. 基于ProCast的镍基单晶高温合金数值模拟[J]. 热加工工艺, 2018, 47(1): 117-120.
    [20]
    宗学文,张斌. DD4合金发动机叶片的定向凝固过程数值模拟[J]. 真空科学与技术学报, 2018, 38(8): 726-729.
    [21]
    王伟, 周研, 屈晓阳, 等. 基于ProCAST的40CrNiMo金属型铸造微观组织分析[J]. 铸造, 2019, 68(5): 449-455.
    [22]
    李伟轩, 于湛, 邓康, 等.电磁场作用下铜板带水平连铸熔体的流动和凝固特征[J]. 中国有色金属学报, 2008, 18(6): 1058-1063.
    [23]
    LUO Z R, GAO Y J, MAO H, et al. Phase field modeling of columnar grain growth: effect of second-phase particles[J]. Chinese Journal of Computational Physics, 2016, 33(3): 367.
    [24]
    龙永强, 刘平, 刘勇, 等. 相场法模拟球形和盘形第二相粒子对晶粒长大的影响[J]. 中国有色金属学报, 2009, 19(1): 84-89.
    [25]
    任萍, 吴建德. 新型硅青铜ZCuSiPbMnFe的试验研究[J]. 机械研究与应用, 2010, 23(2): 55-56, 64.
    [26]
    史欣, 雷雨. 高强度低硅青铜QSi1.8-0.5棒材生产工艺[J]. 矿业研究与开发, 2003, 23(增刊1): 206-207.
  • Related Articles

    [1]CHENG Jinshan, GUAN Huadong, WANG Guanshi, WANG Yongchao, LIN Qiang. Experimental study on the acoustic parameters of red sandstone affected by water saturation[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 105-114. DOI: 10.13264/j.cnki.ysjskx.2024.01.013
    [2]YUAN Xin'an, WEN Shujie, SUN Zili, SONG Liangliang. Soil and water characteristics of unsaturated red sandstone weathered soil and effects of rainfall on its slope stability[J]. Nonferrous Metals Science and Engineering, 2023, 14(3): 363-371. DOI: 10.13264/j.cnki.ysjskx.2023.03.009
    [3]XIANG Zhongning, HE Qinchuan, WANG Yiqun, REN Lianggui. Synthesis and wave absorption properties of hollow SiC spherical nanoparticles[J]. Nonferrous Metals Science and Engineering, 2022, 13(1): 83-92. DOI: 10.13264/j.cnki.ysjskx.2022.01.011
    [4]JIN Jiefang, YU Xiong, ZHONG Yilu. Energy dissipation characteristics of red sandstone with different water content during impact loading[J]. Nonferrous Metals Science and Engineering, 2021, 12(5): 69-80. DOI: 10.13264/j.cnki.ysjskx.2021.05.009
    [5]LUO Xiaoyan, HUANG Xianghai, TANG Wencong. Method of predicting sandstone fracture process based on improved VMD and GA-BP neural network[J]. Nonferrous Metals Science and Engineering, 2021, 12(1): 99-107. DOI: 10.13264/j.cnki.ysjskx.2021.01.013
    [6]QU Zhenmin, ZHANG Shuai, ZHANG Yanling. Preparation of CaO-SiO2-Fe2O3-Al2O3 system glass-ceramics from red mud with high iron[J]. Nonferrous Metals Science and Engineering, 2019, 10(4): 34-38, 71. DOI: 10.13264/j.cnki.ysjskx.2019.04.006
    [7]JIN Jiefang, LIANG Chen, WANG Jie, YUAN Wei, WU Yue, ZHANG Rui, WANG Xibo. Effect of confining pressure on spectrum and frequency band energy of stress wave in red sandstone[J]. Nonferrous Metals Science and Engineering, 2018, 9(4): 76-82. DOI: 10.13264/j.cnki.ysjskx.2018.04.013
    [8]ZHAO Kui, YU Bin, LI Qiseng, ZHU Zhicheng, KUANG Zeliang. Experimental study on in-situ stress measurement from marble using acoustic emission method[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 88-93. DOI: 10.13264/j.cnki.ysjskx.2017.03.015
    [9]HU Min, CHEN Min, LUO Yan, LIU Xiaoqiu. Effect of thermal spray coatings of WC-Co on the stress in jaw crusher tooth plate[J]. Nonferrous Metals Science and Engineering, 2016, 7(6): 83-87. DOI: 10.13264/j.cnki.ysjskx.2016.06.0014
    [10]ZHU Zhicheng, LIU Jie, LUO Tao, WANG Xiaojun, FENG XIAO, XU Zhenhua, WANG Ming. Analysis of deformation failure characteristics of concrete wrapped sandstone composite structures[J]. Nonferrous Metals Science and Engineering, 2015, 6(3): 78-82. DOI: 10.13264/j.cnki.ysjskx.2015.03.015
  • Cited by

    Periodical cited type(3)

    1. 程锦山,管华栋,王观石,汪永超,林强. 单轴压缩下不同饱和度红砂岩横波特征研究. 有色金属科学与工程. 2024(01): 105-114 . 本站查看
    2. 肖晓春,刘坤龙,张文萍. 岩体中应力波传播衰减规律研究进展. 辽宁工程技术大学学报(自然科学版). 2024(05): 581-592 .
    3. 王爱文,孙郑齐,潘一山,范德威,李超,于新河,王岗,卢闯. 梯度围岩结构应力波透射模型与传播衰减规律. 煤炭学报. 2023(05): 1969-1984 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (115) PDF downloads (10) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return