Citation: | HU Yujun, ZHANG Yinghui, AI Di, ZHANG Bing, KUANG Junping. Research on process parameters of CuSi3Mn alloy under upward continuous casting[J]. Nonferrous Metals Science and Engineering, 2023, 14(6): 833-842. DOI: 10.13264/j.cnki.ysjskx.2023.06.011 |
[1] |
MUHAMMAD N A, WU C S. Ultrasonic vibration assisted friction stir welding of aluminium alloy and pure copper[J]. Journal of Manufacturing Processes, 2019, 39: 114-127.
|
[2] |
李玉龙, 杨泓, 刘冠鹏, 等. 铜/钢爆炸焊接头界面组织及力学性能研究[J]. 材料科学与工艺, 2020, 28(1): 39-45.
|
[3] |
CHANG C C, WU L H, SHUEH C, et al. Evaluation of microstructure and mechanical properties of dissimilar welding of copper alloy and stainless steel[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91(5): 2217-2224.
|
[4] |
于海平, 范治松, 赵岩, 等.紫铜-碳钢磁脉冲焊接接头界面形貌研究[J].材料科学与工艺, 2015, 23(3): 1-6.
|
[5] |
WANG Y X, LI X J, WANG X H, et al. Fabrication of a thick copper-stainless steel clad plate for nuclear fusion equipment by explosive welding[J]. Fusion Engineering and Design, 2018, 137: 91-96.
|
[6] |
张秉刚. 异种金属电子束焊接技术在发动机制造中的应用[J]. 中国表面工程, 2016, 29(5): 2.
|
[7] |
李佳, 冉令坤, 汪维登, 等. 焊丝成分对汽车车身外观焊缝耐腐蚀性的影响[J]. 热加工工艺, 2022, 51(7): 110-113.
|
[8] |
CHEN J S, XIAO X P, YUAN D W, et al. Microstructure and properties of Cu-Cr-Zr alloy with columnar crystal structure processed by upward continuous casting[J]. Journal of Alloys and Compounds, 2021, 889: 161700.
|
[9] |
HUA S M, ZHANG P Z, LIU Z L, et al. Numerical simulation of the solidification process of Cu-0.45% Sn alloy in upward continuous casting[J]. Materials Research Express, 2021, 8(9): 096532.
|
[10] |
WANG Z H, LUO S, WANG W L, et al. Numerical Simulation of Solidification Structure of Continuously Cast Billet with Grain Motion[J]. Metallurgical and Materials Transactions B, 2020, 51(6): 2882-2894.
|
[11] |
WANG X H, YU Z M. Numerical simulation of solidification structure of continuously cast bloom of steel 20CrNiMo[J]. Metallurgy, 2019, 58(3/4): 183-186.
|
[12] |
孟祥宁, 崔磊, 朱苗勇. 元胞自动机模拟钢凝固组织演化研究进展[J]. 中南大学学报(自然科学版), 2022, 53(2): 387-397.
|
[13] |
聂金成, 叶洁云, 汪志刚, 等. 基于ProCAST数值模拟的马氏体不锈钢折流器铸造工艺优化[J]. 有色金属科学与工程, 2020, 11(6): 27-33.
|
[14] |
DUBEY S, SWAIN S R. Numerical investigation on solidification in casting using ProCAST[J]. IOP Conference Series: Materials Science and Engineering, 2019, 561(1): 012049.
|
[15] |
刘文文, 黄华贵. 双辊铸轧热-流-组织耦合模拟及铸轧区组织精细分析[J]. 材料热处理学报, 2021, 42(7): 126-133.
|
[16] |
WANG J L, WANG F M, ZHAO Y Y, et al. Numerical simulation of 3d-microstructures in solidification processes based on the CAFE method[J]. International Journal of Minerals, Metallurgy and Materials, 2009, 16(6): 640-645.
|
[17] |
潘德清, 李道喜, 牛冬鑫, 等. 气隙热阻对水平连铸Cu-15Ni-8Sn合金组织和成分分布影响[J]. 特种铸造及有色合金, 2020, 40(1): 69-74.
|
[18] |
杨庆宝, 王兰浩, 曾浩, 等. Cu-Sn合金上引连铸凝固组织数值模拟[J]. 铸造技术, 2022, 43(2): 123-130.
|
[19] |
胡鹏, 李军, 李建国. 基于ProCast的镍基单晶高温合金数值模拟[J]. 热加工工艺, 2018, 47(1): 117-120.
|
[20] |
宗学文,张斌. DD4合金发动机叶片的定向凝固过程数值模拟[J]. 真空科学与技术学报, 2018, 38(8): 726-729.
|
[21] |
王伟, 周研, 屈晓阳, 等. 基于ProCAST的40CrNiMo金属型铸造微观组织分析[J]. 铸造, 2019, 68(5): 449-455.
|
[22] |
李伟轩, 于湛, 邓康, 等.电磁场作用下铜板带水平连铸熔体的流动和凝固特征[J]. 中国有色金属学报, 2008, 18(6): 1058-1063.
|
[23] |
LUO Z R, GAO Y J, MAO H, et al. Phase field modeling of columnar grain growth: effect of second-phase particles[J]. Chinese Journal of Computational Physics, 2016, 33(3): 367.
|
[24] |
龙永强, 刘平, 刘勇, 等. 相场法模拟球形和盘形第二相粒子对晶粒长大的影响[J]. 中国有色金属学报, 2009, 19(1): 84-89.
|
[25] |
任萍, 吴建德. 新型硅青铜ZCuSiPbMnFe的试验研究[J]. 机械研究与应用, 2010, 23(2): 55-56, 64.
|
[26] |
史欣, 雷雨. 高强度低硅青铜QSi1.8-0.5棒材生产工艺[J]. 矿业研究与开发, 2003, 23(增刊1): 206-207.
|
[1] | FAN Wenxin, GAO Yang, WANG Pengfei, CHEN Yan, YUAN Xia, PENG Lijun, FU Yabo, ZHANG Zhongtao. Effect of Ni and Si additions on the microstructure and mechanical properties of Cu-7Sn alloy[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 85-95. DOI: 10.13264/j.cnki.ysjskx.2025.01.010 |
[2] | SU Yao, GUO Hanjie, GUO Jing, LUO Yiwa, LI Gang, YANG Qingsong, ZHENG Xiaodan. Effect of Ti content on solidification organization and non-metallic inclusions in 0Cr25Al5 electrothermal alloy[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 8-16. DOI: 10.13264/j.cnki.ysjskx.2025.01.002 |
[3] | GUO Hao, WANG Yajie, ZHAO Hongbo, ZUO Haibin. Numerical simulation of pulverized coal forming process[J]. Nonferrous Metals Science and Engineering, 2024, 15(3): 357-363. DOI: 10.13264/j.cnki.ysjskx.2024.03.006 |
[4] | QI Zhaoming, XU Huaben, LE Shuncong, HUANG Hui, GUO Chengjun, XIAO Xiangpeng, YANG Bin. Effect of rare earth lanthanum on microstructure and properties of Cu-15Ni-8Sn alloy[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 569-579. DOI: 10.13264/j.cnki.ysjskx.2023.04.016 |
[5] | ZHU Wenjia, ZHAO Zhongmei, LONG Dengcheng, ZHANG Xin, QIN Junhu, LU Hongbo. Study on microstructure and properties of SnBi36Ag0.5Sbx solder alloy[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 536-542. DOI: 10.13264/j.cnki.ysjskx.2023.04.012 |
[6] | XIE Fanghao, LI Jianan, DENG Shenghua, LI Weirong. The microstructure and mechanical properties of selective laser melted Al-Zn-Mg-Sc alloy[J]. Nonferrous Metals Science and Engineering, 2022, 13(4): 61-69. DOI: 10.13264/j.cnki.ysjskx.2022.04.008 |
[7] | QUAN Yongqi, CHENG Hanming, WANG Herui, ZHAO Yao, LIN Gaoyong. Effects of heat treatment on the microstructure and mechanical properties of die casting AlSi10MnMg alloy[J]. Nonferrous Metals Science and Engineering, 2022, 13(2): 98-106. DOI: 10.13264/j.cnki.ysjskx.2022.02.014 |
[8] | CHEN Tao, LIU Zheng, CHEN Zhiping, ZHANG Jiayi. Effect of electromagnetic stirring way and rare earth on solidification structure of semi-solid A356 alloy[J]. Nonferrous Metals Science and Engineering, 2017, 8(5): 76-82. DOI: 10.13264/j.cnki.ysjskx.2017.05.011 |
[9] | YE Qing, FENG Xingyu, ZHAO Hongjin. Effects of solid solution time on microstructure and properties of Cu-Ni-Si-Mg alloy[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 79-83. DOI: 10.13264/j.cnki.ysjskx.2017.03.013 |
[10] | HE Fu-ping, LIU Feng, LI Jian-yun, ZHANG Jing-en, WANG Zhi-xiang. The effects of solution process and aging on Al-Mg-Si-Cu alloy's microstructure and properties[J]. Nonferrous Metals Science and Engineering, 2013, 4(1): 44-48. DOI: 10.13264/j.cnki.ysjskx.2013.01.013 |