Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
HU Yujun, ZHANG Yinghui, AI Di, ZHANG Bing, KUANG Junping. Research on process parameters of CuSi3Mn alloy under upward continuous casting[J]. Nonferrous Metals Science and Engineering, 2023, 14(6): 833-842. DOI: 10.13264/j.cnki.ysjskx.2023.06.011
Citation: HU Yujun, ZHANG Yinghui, AI Di, ZHANG Bing, KUANG Junping. Research on process parameters of CuSi3Mn alloy under upward continuous casting[J]. Nonferrous Metals Science and Engineering, 2023, 14(6): 833-842. DOI: 10.13264/j.cnki.ysjskx.2023.06.011

Research on process parameters of CuSi3Mn alloy under upward continuous casting

More Information
  • Received Date: February 18, 2023
  • Revised Date: March 24, 2023
  • Available Online: December 28, 2023
  • CuSi3Mn alloy is an excellent welding material that can be used for welding dissimilar metals between copper and steel. However, it has some problems such as, a wide solidification temperature range, high viscosity, surface cracks, pits, broken rods in the production of upward continuous casting. In this paper, ProCast finite element method software was used to numerically simulate the upward continuous casting forming process of the CuSi3Mn alloy rod. The influence laws of alloy composition, die structure, casting temperature and casting speed on the depth of the mushy zone and solidification microstructure during the solidification process were systematically investigated. The results showed that decreasing the Si content, but increasing the Mn content and casting speed was beneficial to refine grain and increase the equiaxed crystal ratio. Reducing the first cold zone height and the die thickness but increasing the casting temperature could reduce the depth of the mushy zone, which was conducive to the stable growth of the solidified structure. However, the equiaxed crystal ratio decreased with the increasing of grain size. Finally, the CuSi3Mn alloy rod with qualified quality could be successfully produced, when its Si content was 2.8%‒3.0% (mass percentage) and Mn content 1.0%‒1.2% (mass percentage), with No.4 die used, the casting speed of 4‒5 mm/s and casting temperature of 1040‒1140 ℃.
  • [1]
    MUHAMMAD N A, WU C S. Ultrasonic vibration assisted friction stir welding of aluminium alloy and pure copper[J]. Journal of Manufacturing Processes, 2019, 39: 114-127.
    [2]
    李玉龙, 杨泓, 刘冠鹏, 等. 铜/钢爆炸焊接头界面组织及力学性能研究[J]. 材料科学与工艺, 2020, 28(1): 39-45.
    [3]
    CHANG C C, WU L H, SHUEH C, et al. Evaluation of microstructure and mechanical properties of dissimilar welding of copper alloy and stainless steel[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91(5): 2217-2224.
    [4]
    于海平, 范治松, 赵岩, 等.紫铜-碳钢磁脉冲焊接接头界面形貌研究[J].材料科学与工艺, 2015, 23(3): 1-6.
    [5]
    WANG Y X, LI X J, WANG X H, et al. Fabrication of a thick copper-stainless steel clad plate for nuclear fusion equipment by explosive welding[J]. Fusion Engineering and Design, 2018, 137: 91-96.
    [6]
    张秉刚. 异种金属电子束焊接技术在发动机制造中的应用[J]. 中国表面工程, 2016, 29(5): 2.
    [7]
    李佳, 冉令坤, 汪维登, 等. 焊丝成分对汽车车身外观焊缝耐腐蚀性的影响[J]. 热加工工艺, 2022, 51(7): 110-113.
    [8]
    CHEN J S, XIAO X P, YUAN D W, et al. Microstructure and properties of Cu-Cr-Zr alloy with columnar crystal structure processed by upward continuous casting[J]. Journal of Alloys and Compounds, 2021, 889: 161700.
    [9]
    HUA S M, ZHANG P Z, LIU Z L, et al. Numerical simulation of the solidification process of Cu-0.45% Sn alloy in upward continuous casting[J]. Materials Research Express, 2021, 8(9): 096532.
    [10]
    WANG Z H, LUO S, WANG W L, et al. Numerical Simulation of Solidification Structure of Continuously Cast Billet with Grain Motion[J]. Metallurgical and Materials Transactions B, 2020, 51(6): 2882-2894.
    [11]
    WANG X H, YU Z M. Numerical simulation of solidification structure of continuously cast bloom of steel 20CrNiMo[J]. Metallurgy, 2019, 58(3/4): 183-186.
    [12]
    孟祥宁, 崔磊, 朱苗勇. 元胞自动机模拟钢凝固组织演化研究进展[J]. 中南大学学报(自然科学版), 2022, 53(2): 387-397.
    [13]
    聂金成, 叶洁云, 汪志刚, 等. 基于ProCAST数值模拟的马氏体不锈钢折流器铸造工艺优化[J]. 有色金属科学与工程, 2020, 11(6): 27-33.
    [14]
    DUBEY S, SWAIN S R. Numerical investigation on solidification in casting using ProCAST[J]. IOP Conference Series: Materials Science and Engineering, 2019, 561(1): 012049.
    [15]
    刘文文, 黄华贵. 双辊铸轧热-流-组织耦合模拟及铸轧区组织精细分析[J]. 材料热处理学报, 2021, 42(7): 126-133.
    [16]
    WANG J L, WANG F M, ZHAO Y Y, et al. Numerical simulation of 3d-microstructures in solidification processes based on the CAFE method[J]. International Journal of Minerals, Metallurgy and Materials, 2009, 16(6): 640-645.
    [17]
    潘德清, 李道喜, 牛冬鑫, 等. 气隙热阻对水平连铸Cu-15Ni-8Sn合金组织和成分分布影响[J]. 特种铸造及有色合金, 2020, 40(1): 69-74.
    [18]
    杨庆宝, 王兰浩, 曾浩, 等. Cu-Sn合金上引连铸凝固组织数值模拟[J]. 铸造技术, 2022, 43(2): 123-130.
    [19]
    胡鹏, 李军, 李建国. 基于ProCast的镍基单晶高温合金数值模拟[J]. 热加工工艺, 2018, 47(1): 117-120.
    [20]
    宗学文,张斌. DD4合金发动机叶片的定向凝固过程数值模拟[J]. 真空科学与技术学报, 2018, 38(8): 726-729.
    [21]
    王伟, 周研, 屈晓阳, 等. 基于ProCAST的40CrNiMo金属型铸造微观组织分析[J]. 铸造, 2019, 68(5): 449-455.
    [22]
    李伟轩, 于湛, 邓康, 等.电磁场作用下铜板带水平连铸熔体的流动和凝固特征[J]. 中国有色金属学报, 2008, 18(6): 1058-1063.
    [23]
    LUO Z R, GAO Y J, MAO H, et al. Phase field modeling of columnar grain growth: effect of second-phase particles[J]. Chinese Journal of Computational Physics, 2016, 33(3): 367.
    [24]
    龙永强, 刘平, 刘勇, 等. 相场法模拟球形和盘形第二相粒子对晶粒长大的影响[J]. 中国有色金属学报, 2009, 19(1): 84-89.
    [25]
    任萍, 吴建德. 新型硅青铜ZCuSiPbMnFe的试验研究[J]. 机械研究与应用, 2010, 23(2): 55-56, 64.
    [26]
    史欣, 雷雨. 高强度低硅青铜QSi1.8-0.5棒材生产工艺[J]. 矿业研究与开发, 2003, 23(增刊1): 206-207.
  • Related Articles

    [1]FAN Wenxin, GAO Yang, WANG Pengfei, CHEN Yan, YUAN Xia, PENG Lijun, FU Yabo, ZHANG Zhongtao. Effect of Ni and Si additions on the microstructure and mechanical properties of Cu-7Sn alloy[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 85-95. DOI: 10.13264/j.cnki.ysjskx.2025.01.010
    [2]SU Yao, GUO Hanjie, GUO Jing, LUO Yiwa, LI Gang, YANG Qingsong, ZHENG Xiaodan. Effect of Ti content on solidification organization and non-metallic inclusions in 0Cr25Al5 electrothermal alloy[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 8-16. DOI: 10.13264/j.cnki.ysjskx.2025.01.002
    [3]GUO Hao, WANG Yajie, ZHAO Hongbo, ZUO Haibin. Numerical simulation of pulverized coal forming process[J]. Nonferrous Metals Science and Engineering, 2024, 15(3): 357-363. DOI: 10.13264/j.cnki.ysjskx.2024.03.006
    [4]QI Zhaoming, XU Huaben, LE Shuncong, HUANG Hui, GUO Chengjun, XIAO Xiangpeng, YANG Bin. Effect of rare earth lanthanum on microstructure and properties of Cu-15Ni-8Sn alloy[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 569-579. DOI: 10.13264/j.cnki.ysjskx.2023.04.016
    [5]ZHU Wenjia, ZHAO Zhongmei, LONG Dengcheng, ZHANG Xin, QIN Junhu, LU Hongbo. Study on microstructure and properties of SnBi36Ag0.5Sbx solder alloy[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 536-542. DOI: 10.13264/j.cnki.ysjskx.2023.04.012
    [6]XIE Fanghao, LI Jianan, DENG Shenghua, LI Weirong. The microstructure and mechanical properties of selective laser melted Al-Zn-Mg-Sc alloy[J]. Nonferrous Metals Science and Engineering, 2022, 13(4): 61-69. DOI: 10.13264/j.cnki.ysjskx.2022.04.008
    [7]QUAN Yongqi, CHENG Hanming, WANG Herui, ZHAO Yao, LIN Gaoyong. Effects of heat treatment on the microstructure and mechanical properties of die casting AlSi10MnMg alloy[J]. Nonferrous Metals Science and Engineering, 2022, 13(2): 98-106. DOI: 10.13264/j.cnki.ysjskx.2022.02.014
    [8]CHEN Tao, LIU Zheng, CHEN Zhiping, ZHANG Jiayi. Effect of electromagnetic stirring way and rare earth on solidification structure of semi-solid A356 alloy[J]. Nonferrous Metals Science and Engineering, 2017, 8(5): 76-82. DOI: 10.13264/j.cnki.ysjskx.2017.05.011
    [9]YE Qing, FENG Xingyu, ZHAO Hongjin. Effects of solid solution time on microstructure and properties of Cu-Ni-Si-Mg alloy[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 79-83. DOI: 10.13264/j.cnki.ysjskx.2017.03.013
    [10]HE Fu-ping, LIU Feng, LI Jian-yun, ZHANG Jing-en, WANG Zhi-xiang. The effects of solution process and aging on Al-Mg-Si-Cu alloy's microstructure and properties[J]. Nonferrous Metals Science and Engineering, 2013, 4(1): 44-48. DOI: 10.13264/j.cnki.ysjskx.2013.01.013
  • Cited by

    Periodical cited type(3)

    1. 景晓环,郭瑞华,安胜利,张捷宇,周国治,李慧琴. 乙醇在Pt低指数晶面吸附的密度泛函理论研究. 稀有金属. 2022(02): 206-214 .
    2. 李茹,娄志超,顾水祥,王秋怡,刘杰,李延军. 利用竹粉制备吸波磁性炭. 林业工程学报. 2021(01): 112-120 .
    3. 陆瑞,吴广新,张捷宇. 氢还原体系控制水压的物相平衡计算. 钢铁研究学报. 2021(02): 119-126 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (115) PDF downloads (10) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return