Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
FENG Kai, ZHONG Jian-hua, TANG Zhi-li. The 3-D numerical simulation of heat transfer process for multi-start spiral pipe[J]. Nonferrous Metals Science and Engineering, 2012, 3(3): 95-98. DOI: 10.13264/j.cnki.ysjskx.2012.03.006
Citation: FENG Kai, ZHONG Jian-hua, TANG Zhi-li. The 3-D numerical simulation of heat transfer process for multi-start spiral pipe[J]. Nonferrous Metals Science and Engineering, 2012, 3(3): 95-98. DOI: 10.13264/j.cnki.ysjskx.2012.03.006

The 3-D numerical simulation of heat transfer process for multi-start spiral pipe

More Information
  • Received Date: April 10, 2012
  • Published Date: June 29, 2012
  • The utilization of energy has become the current hotspot with the development concept of energy saving. This article studies the 3-d numerical simulation of heat transfer process for multi-start spiral pipe by using the light pipe with equivalent diameter as the benchmark tube. The heat transfer process of models is simulated through the ANSYS, obtaining the distribution of the temperature and flow field in the heat transfer process. The results are analyzed comprehensively by the boundary layer theory and collaborative field theory in heat transfer. The results show: the heat transfer performance of multi-start spiral pipe is significantly better than that of the light pipe with the same heat flux. In comparison with the light pipe, the exit temperature of the fluid for the multi-start spiral pipe is increased to 2.6 times and the exit speed is reduced to 50 %. The main reason of heat transfer enhancement lies in its internal and external rib structure. The walls of multi-start spiral pipe are not liable for scaling for fluid vortex flow due to its rib structure.
  • [1]
    林宗虎,汪军,李瑞阳. 强化传热技术[M]. 北京:化学工业出版社,2006.
    [2]
    王咏梅,康显丽,张丽萍. Pro/ENGINEER Wildfire 4.0 中文版基础教程[M]. 北京:清华大学出版社,2008.
    [3]
    彭洁. 螺旋槽管换热过程的三维数值模拟[D]. 秦皇岛:燕山大学,2006.
    [4]
    朱冬生,郭新超,刘庆亮. 扭曲管内传热及流动特性数值模拟[J]. 流体机械,2012,40(2):63-67. http://www.cnki.com.cn/Article/CJFDTOTAL-LTJX201202013.htm
    [5]
    许洋,党沙沙,胡仁喜. ANSYS11.0/FLOTRAN 流场分析实例指导教程[M]. 北京:机械工业出版社,2009.
    [6]
    明宇. 具有螺旋形插件换热管的流场与温度场分析[D]. 沈阳:东北大学,2008.
    [7]
    翟庆良. 湍流新理论及其应用[M]. 北京:冶金工业出版社,2009.
    [8]
    过增元,黄素逸. 场协同原理与强化传热新技术[M]. 北京:中国电力出版社,2004.
    [9]
    Bergles A E.Heat transfer enhancement-encouragement and accom- modation of high heat fluxes[J]. Journals of Heat Transfer,1995,119: 8-19. http://cn.bing.com/academic/profile?id=1987971803&encoded=0&v=paper_preview&mkt=zh-cn
    [10]
    Lisenhard J H V. Review of heat transfer augmentation in turbulent flows[J]. Applied Mechanics Reviews,1998,51(2):B19.
    [11]
    贾瑞宣. 螺旋槽管强化传热研究[D]. 北京:华北电力大学,2003.
    [12]
    Islamg Y. Effect of rounding of protructing edge on convection heat transfer in a converging-diverging channel[J]. International Commu- nication in Heat and Mass Transfer, 2008,35(1):643-647. http://cn.bing.com/academic/profile?id=2020383064&encoded=0&v=paper_preview&mkt=zh-cn
    [13]
    邹华生,钟理,伍钦. 流体力学与传热[M]. 广州:华南理工大学出版社,2004.
    [14]
    周瑞,何海澜,白明爽. 波纹管内湍流传热数值模拟[J]. 石油化工设备,2011, 40(6):49-51. http://www.cnki.com.cn/Article/CJFDTOTAL-SYSB201106012.htm
    [15]
    过增元. 对流换热的物理机制及其控制[J]. 科学通报,2001, 45(19):2118-2122. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200019019.htm
    [16]
    Wang S, Guo Z Y, Li Z X. Heat transfer enhancement by using metallic filament insert in channel flow[J]. IJ Heat Mass Transfer , 2001, 44:1373-1378. doi: 10.1016/S0017-9310(00)00173-3
    [17]
    ZHONG Jian-hua, JIANG Li-ming, FENG Kai. The 3-D numerical simulation of heat transfer process of finned copper tube [J]. Advanced Materials Research, 2012, 393-395:412-415. https://www.researchgate.net/publication/282585117_The_3-D_Numerical_Simulation_of_Heat_Transfer_Process_of_Finned_Copper_Tube
    [18]
    车晓梅,陈伟庆,赵江,等. 水口类型对大方坯连铸结晶器内流场和温度场的影响[J]. 有色金属科学与工程,2012, (2)1:32-36. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201201008
    [19]
    靳遵龙,李赵,董其伍,等. 螺旋槽管管内强化传热的三维数值模拟[J]. 郑州大学学报:工学版,2011,32(6):5-8. http://www.cnki.com.cn/Article/CJFDTOTAL-ZZGY201106003.htm
  • Related Articles

    [1]LIAN Baidong, QIAO Dengpan, YANG Tianyu, WANG Jun, CHEN Jian, LI Shaoteng, LI Yongming, GAO Bo, LONG Gan. Research on pipeline transportation design of tailings slurry from a tin mine in Yunnan Province based on ANSYS-FLUENT[J]. Nonferrous Metals Science and Engineering, 2024, 15(3): 407-421. DOI: 10.13264/j.cnki.ysjskx.2024.03.011
    [2]HU Min, CHEN Min, LUO Yan, LIU Xiaoqiu. Effect of thermal spray coatings of WC-Co on the stress in jaw crusher tooth plate[J]. Nonferrous Metals Science and Engineering, 2016, 7(6): 83-87. DOI: 10.13264/j.cnki.ysjskx.2016.06.0014
    [3]Deng Fei, HAN Xiao-liang, Liao sheng-yin, Wang Chun-hui, Hu Long-fei, Yin Li bing. The Numerical Simulation Research of Deep Hole Blasting On the Mine Roadway's Vibrating intensiy[J]. Nonferrous Metals Science and Engineering, 2015, 6(6): 106-110. DOI: 10.13264/j.cnki.ysjskx.2015.06.019
    [4]LEI Facheng, ZHAO Yuncai. Feasibility analysis of selecting gearbox bearings indenter based on ANSYS[J]. Nonferrous Metals Science and Engineering, 2015, 6(1): 116-120. DOI: 10.13264/j.cnki.ysjskx.2015.01.022
    [5]WU Xianzhen, YIN Libing, HU Wei, GAO Xiang, WANG Liangliang. Vibration intensity of multi milliseconds blasting in underground mine based on LS-DYNA[J]. Nonferrous Metals Science and Engineering, 2014, 5(6): 100-104. DOI: 10.13264/j.cnki.ysjskx.2014.06.017
    [6]CHANG Zhenzhen, ZHANG Jiongming, WANG Shunxi, LIU Yi, WANG Bo. Numerical simulation of free surface vortex in 150 t ladle and turbulent model choice[J]. Nonferrous Metals Science and Engineering, 2014, 5(4): 37-43. DOI: 10.13264/j.cnki.ysjskx.2014.04.008
    [7]Lin Guohong. Stability classification of filling body's base plate based on ANSYS and GeoStudio coupling[J]. Nonferrous Metals Science and Engineering, 2014, 5(3): 91-95. DOI: 10.13264/j.cnki.ysjskx.2014.03.017
    [8]WANG Jin-liang, WU Yan-xin, ZHANG Wen-hai. Development Status of Lead Smelting Technology and the Lead Vortex Flash Smelting Process[J]. Nonferrous Metals Science and Engineering, 2011, 2(1): 14-18.
    [9]ZHAO Yun-cai, LEI Fa-cheng. Strength Analysis of Ceramic Filter's Rotary Vacuum Based on ANSYS[J]. Nonferrous Metals Science and Engineering, 2009, 23(3): 42-45.
    [10]CUI Dong-liang, LI Xi-bing, ZHAO Guo-ya. Analysis of the Numerical Simulation to Structure Parameter of Hard-To-Mine Ore Body in Xincheng Gold Mine[J]. Nonferrous Metals Science and Engineering, 2006, 20(3): 13-17.

Catalog

    Article Metrics

    Article views (44) PDF downloads (3) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return