Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
ZHANG Ying-hui, TIAN Hai-xia, ZHU Gen-song, QIN Jing. The density and hardness of W-Cu composite materials affected by nanotubes[J]. Nonferrous Metals Science and Engineering, 2012, 3(3): 33-35. DOI: 10.13264/j.cnki.ysjskx.2012.03.009
Citation: ZHANG Ying-hui, TIAN Hai-xia, ZHU Gen-song, QIN Jing. The density and hardness of W-Cu composite materials affected by nanotubes[J]. Nonferrous Metals Science and Engineering, 2012, 3(3): 33-35. DOI: 10.13264/j.cnki.ysjskx.2012.03.009

The density and hardness of W-Cu composite materials affected by nanotubes

More Information
  • Received Date: February 21, 2012
  • Published Date: June 29, 2012
  • Combined with vacuum sintering, W-20 % Cu/C composite material was prepared by mechanical alloying. Carbon nanotubes can be used as strengthening phase for W-20 % Cu composite material for its good overall performance. The particle sizes of W-20 % Cu composite powder and the density and hardness of W-Cu composite materials with different carbon nanotubes addition are analyzed by applying particle size tester. Adding carbon nanotubes can continuously refine the grain size of W-20 % Cu composite powder. The density and hardness of W-20 % Cu composite gradually increases with increasing mass fraction of carbon nanotubes. It shows that mechanical alloying technology enables carbon nanotubes dispersed in the W-20 % Cu composite, which leads to fine grain strengthening.
  • [1]
    Kim Y D,Oh N L,Oh S T. Thermal conductivity of W-Cu composites at various Temperatures [J].Materials Letters, 2001, 51(5):420-424. doi: 10.1016/S0167-577X(01)00330-5
    [2]
    周武平,吕大铭.钨铜材料应用和生产的发展现状[J].粉末冶金材料科学与工程,2005,10(1):21-25. http://www.cnki.com.cn/Article/CJFDTOTAL-FMGC200501002.htm
    [3]
    汪峰涛.新型钨铜复合材料的设计、制备与性能研究[D].合肥:合肥工业大学,2009.
    [4]
    吕大铭.钨铜材料的生产、应用和发展[J].中国钨业,2004,19(5):69-74. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGWU200405014.htm
    [5]
    雒晗,栾道成,王正云,等.高能球磨工艺对钨铜复合材料组织的影响[J].粉末冶金工业,2007,17(1):30-33. http://www.cnki.com.cn/Article/CJFDTOTAL-FMYG200701008.htm
    [6]
    田颖,李运刚,焦阳.超细W-Cu 复合粉末的制备现状[J].粉末冶金技术,2011,29(4):296-299.
    [7]
    刘涛.W-20 %Cu 超细复合粉末的制备和烧结[J].粉末冶金技术, 2007,25(4):259-261. http://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ200704006.htm
    [8]
    杨晓红.超高压CuW/CuCr 整体电触头材料的研究[D].西安:西安理工大学,2009.
    [9]
    牟秋红,李金辉.功率性LED 封装材料的研究现状及发展方向[J]. 山东科学,2011,24(5):30-34.
    [10]
    Treacy M M J,Ebbesen T W,Gbson J M, et al. Exceptionally high Youngs modulus observed for individual carbon nanotubes[J]. Nature, 1996, 381:678-680. doi: 10.1038/381678a0
    [11]
    Lau K T, Hui D. The revolutionary creation of new advanced mate- rials-carbon nanotube polymer composites[J]. Comp Pt B : Eeng, 2002,33(4):263-277. doi: 10.1016/S1359-8368(02)00012-4
    [12]
    Subram oney S. Novel nanocarbons-structure, properties and poten- tial applications[J]. Adv. Mater, 1998,10(15): 1157-1171. doi: 10.1002/(ISSN)1521-4095
    [13]
    Kim P, Shi L, Majumdar A, et al. Thermal transport measurements of individual multi-walled nanotubes[J]. Phys Rev Lett, 2001,87(21): 2155021-2155024. http://www.oalib.com/references/19981211
    [14]
    Berber S, Kwon Y K, Tomanek D. Unusually high thermal conduc- tivity of carbon nanotubes[J]. Phys Rev Lett, 2000,84(20):4613- 4616. doi: 10.1103/PhysRevLett.84.4613
    [15]
    Hone J, Whitney M, Piskoti C, et al. Thermal conductivity of sin- gle-walled carbon nanotubes[J]. Phys Rev B, 1999,59: 2514-2516. doi: 10.1103/PhysRevB.59.R2514
    [16]
    袁绍勤.机械合金化制备钨铜合金触头材料[D].赣州:江西理工大学,2003.
  • Related Articles

    [1]WANG Shuhong, CHEN Budong, CAO Feifei, WU Qijun, QIAN Chunbo, XU Feixing, LI Zhongping. Preparation of TiO2/CuS composite materials and their performance in photocatalytic degradation of polluted wastewater[J]. Nonferrous Metals Science and Engineering, 2024, 15(6): 877-889. DOI: 10.13264/j.cnki.ysjskx.2024.06.011
    [2]PENG Junjun, WANG Xu, CAI Boqing, SHI Zhongning, REN Rushan. Investigation on the density of LiF-[CaF2/YbF3]-Yb2O3 molten salt and Yb-Ni alloy[J]. Nonferrous Metals Science and Engineering, 2024, 15(2): 189-194. DOI: 10.13264/j.cnki.ysjskx.2024.02.005
    [3]LI Liqing, ZHOU Run, LONG Huiting, KONG Huimin, ZOU Laixi, LUO Xianping, SHAO Yunan, YANG Guofei. Surface modification mechanism of magnesium hydroxide (101) based on density functional theory[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 447-453. DOI: 10.13264/j.cnki.ysjskx.2023.04.001
    [4]PENG Wanwan, XU Chang, LI Zhifeng, FAN Fengsong, ZHANG Qian, WANG Chunxiang, ZHONG Shengwen. Effects of surface density and compaction density on properties of fast charge lithium ion battery[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 69-73. DOI: 10.13264/j.cnki.ysjskx.2017.03.011
    [5]MA Shangrun. Density of molten salt system for flow line magnesium electrolysis[J]. Nonferrous Metals Science and Engineering, 2017, 8(1): 42-45,69. DOI: 10.13264/j.cnki.ysjskx.2017.01.007
    [6]LI Ming-zhou, HUANG Jin-di, TONG Chang-ren, ZHANG Wen-hai. A composition soft-sensing model of FeO-Fe2O3-SiO2 ternary slag system based on two-temperature two-density method[J]. Nonferrous Metals Science and Engineering, 2016, 7(5): 37-41. DOI: 10.13264/j.cnki.ysjskx.2016.05.007
    [7]LIU Yuandong, YUAN Le, YU Runlan. Overview of high-cell-density cultivation of microorganisms[J]. Nonferrous Metals Science and Engineering, 2015, 6(4): 76-80. DOI: 10.13264/j.cnki.ysjskx.2015.04.016
    [8]HE Gui-chun, JIANG Wei, XIANG Hua-mei, QI Mei-chao, KANG Qian. Density functional theory and its application in mineral processing[J]. Nonferrous Metals Science and Engineering, 2014, 5(2): 62-66. DOI: 10.13264/j.cnki.ysjskx.2014.02.011
    [9]WANG De-zhong, ZHOU Bin, ZHAO Kui, ZHONG Chun-hui. Application of the Ultra-high Density Resistivity Method in Engineering Geology Investigation[J]. Nonferrous Metals Science and Engineering, 2010, 24(1): 10-12.
    [10]CUI Dong-liang, LI Xi-bing, ZHAO Guo-ya. Analysis of the Numerical Simulation to Structure Parameter of Hard-To-Mine Ore Body in Xincheng Gold Mine[J]. Nonferrous Metals Science and Engineering, 2006, 20(3): 13-17.
  • Cited by

    Periodical cited type(7)

    1. 邱小英,蓝桥发,邱小兵,黄金. 熔盐电解法制备Y-Ni合金工艺研究. 稀土. 2024(02): 105-112 .
    2. 彭军军,王旭,蔡伯清,石忠宁,任如山. LiF-[CaF_2/YbF_3]-Yb_2O_3熔盐及Yb-Ni合金密度特性研究. 有色金属科学与工程. 2024(02): 189-194 . 本站查看
    3. 曾露雪,边子俊,宁周神,陈明,董伟. 稀土铽对斑马鱼急性毒性及抗氧化酶活性的影响. 有色金属科学与工程. 2024(04): 623-632 . 本站查看
    4. 李琳穗,徐明钟,苏严. 原料物理性能对稀土氟盐电解影响的研究. 广州化工. 2024(20): 53-56+88 .
    5. 刘雯雯,赖华生,王玉香,周有池. La/Y比对A_2B_7型La-Y-Ni储氢合金性能的影响. 矿冶工程. 2023(02): 149-153 .
    6. 张永健,蔡伯清,王旭,王瑞祥,石忠宁. LiF-CaF_2-Yb_2O_3熔盐及Ni-Yb合金表面张力研究. 有色金属科学与工程. 2023(06): 802-807 . 本站查看
    7. 刘力,杨天辉,周曦,孟冉浩. 氢化物对Mg_2Ni基合金储氢性能的影响. 有色金属科学与工程. 2023(06): 825-832 . 本站查看

    Other cited types(2)

Catalog

    Article Metrics

    Article views (110) PDF downloads (6) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return