Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
ZHANG Ying-hui, TIAN Hai-xia, ZHU Gen-song, QIN Jing. The density and hardness of W-Cu composite materials affected by nanotubes[J]. Nonferrous Metals Science and Engineering, 2012, 3(3): 33-35. DOI: 10.13264/j.cnki.ysjskx.2012.03.009
Citation: ZHANG Ying-hui, TIAN Hai-xia, ZHU Gen-song, QIN Jing. The density and hardness of W-Cu composite materials affected by nanotubes[J]. Nonferrous Metals Science and Engineering, 2012, 3(3): 33-35. DOI: 10.13264/j.cnki.ysjskx.2012.03.009

The density and hardness of W-Cu composite materials affected by nanotubes

More Information
  • Received Date: February 21, 2012
  • Published Date: June 29, 2012
  • Combined with vacuum sintering, W-20 % Cu/C composite material was prepared by mechanical alloying. Carbon nanotubes can be used as strengthening phase for W-20 % Cu composite material for its good overall performance. The particle sizes of W-20 % Cu composite powder and the density and hardness of W-Cu composite materials with different carbon nanotubes addition are analyzed by applying particle size tester. Adding carbon nanotubes can continuously refine the grain size of W-20 % Cu composite powder. The density and hardness of W-20 % Cu composite gradually increases with increasing mass fraction of carbon nanotubes. It shows that mechanical alloying technology enables carbon nanotubes dispersed in the W-20 % Cu composite, which leads to fine grain strengthening.
  • [1]
    Kim Y D,Oh N L,Oh S T. Thermal conductivity of W-Cu composites at various Temperatures [J].Materials Letters, 2001, 51(5):420-424. doi: 10.1016/S0167-577X(01)00330-5
    [2]
    周武平,吕大铭.钨铜材料应用和生产的发展现状[J].粉末冶金材料科学与工程,2005,10(1):21-25. http://www.cnki.com.cn/Article/CJFDTOTAL-FMGC200501002.htm
    [3]
    汪峰涛.新型钨铜复合材料的设计、制备与性能研究[D].合肥:合肥工业大学,2009.
    [4]
    吕大铭.钨铜材料的生产、应用和发展[J].中国钨业,2004,19(5):69-74. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGWU200405014.htm
    [5]
    雒晗,栾道成,王正云,等.高能球磨工艺对钨铜复合材料组织的影响[J].粉末冶金工业,2007,17(1):30-33. http://www.cnki.com.cn/Article/CJFDTOTAL-FMYG200701008.htm
    [6]
    田颖,李运刚,焦阳.超细W-Cu 复合粉末的制备现状[J].粉末冶金技术,2011,29(4):296-299.
    [7]
    刘涛.W-20 %Cu 超细复合粉末的制备和烧结[J].粉末冶金技术, 2007,25(4):259-261. http://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ200704006.htm
    [8]
    杨晓红.超高压CuW/CuCr 整体电触头材料的研究[D].西安:西安理工大学,2009.
    [9]
    牟秋红,李金辉.功率性LED 封装材料的研究现状及发展方向[J]. 山东科学,2011,24(5):30-34.
    [10]
    Treacy M M J,Ebbesen T W,Gbson J M, et al. Exceptionally high Youngs modulus observed for individual carbon nanotubes[J]. Nature, 1996, 381:678-680. doi: 10.1038/381678a0
    [11]
    Lau K T, Hui D. The revolutionary creation of new advanced mate- rials-carbon nanotube polymer composites[J]. Comp Pt B : Eeng, 2002,33(4):263-277. doi: 10.1016/S1359-8368(02)00012-4
    [12]
    Subram oney S. Novel nanocarbons-structure, properties and poten- tial applications[J]. Adv. Mater, 1998,10(15): 1157-1171. doi: 10.1002/(ISSN)1521-4095
    [13]
    Kim P, Shi L, Majumdar A, et al. Thermal transport measurements of individual multi-walled nanotubes[J]. Phys Rev Lett, 2001,87(21): 2155021-2155024. http://www.oalib.com/references/19981211
    [14]
    Berber S, Kwon Y K, Tomanek D. Unusually high thermal conduc- tivity of carbon nanotubes[J]. Phys Rev Lett, 2000,84(20):4613- 4616. doi: 10.1103/PhysRevLett.84.4613
    [15]
    Hone J, Whitney M, Piskoti C, et al. Thermal conductivity of sin- gle-walled carbon nanotubes[J]. Phys Rev B, 1999,59: 2514-2516. doi: 10.1103/PhysRevB.59.R2514
    [16]
    袁绍勤.机械合金化制备钨铜合金触头材料[D].赣州:江西理工大学,2003.
  • Related Articles

    [1]SHENG Jianlong, QIAO Yu, WANG Ping, YU Donghua, ZHANG Yanwen. Study on risk prediction of mine karst collapse under the influence of groundwater based on LOF-SMOTE algorithm[J]. Nonferrous Metals Science and Engineering, 2023, 14(3): 372-380. DOI: 10.13264/j.cnki.ysjskx.2023.03.010
    [2]CHEN Guofang, TAN Xitong, ZHI Xueyi, YUAN Mingchang, GUO Shun. Research on reconstruction of ventilation system of mines with multi-sublevel based on ventsim system[J]. Nonferrous Metals Science and Engineering, 2019, 10(4): 94-99. DOI: 10.13264/j.cnki.ysjskx.2019.04.015
    [3]TAO Meixia, CHEN Ming, YANG Quan, HU Lanwen, YANG Tao. Assessment in soil heavy metal pollution and safety pre-warning based on GIS[J]. Nonferrous Metals Science and Engineering, 2017, 8(6): 92-97. DOI: 10.13264/j.cnki.ysjskx.2017.06.015
    [4]QIN Juan, WANG Jun, ZHANG Shui-ping. On Mining Safety Standardization File Management System Base on B/S Mode[J]. Nonferrous Metals Science and Engineering, 2011, 2(4): 81-85.
    [5]LAN Xiao-ji, HAN Li-qin, WANG Zhi-hong. On the Systematic Structure and Key Technologies of GMLGIS[J]. Nonferrous Metals Science and Engineering, 2010, 1(01): 72-75.
    [6]LIU Xiao-sheng, ZHOU Bo. On Vectorization Error of Scanned Map Based on MAPGIS[J]. Nonferrous Metals Science and Engineering, 2009, 23(1): 45-48.
    [7]ZHANG Chun-lei, LIU Xue-jun. Application of Global Positioning System in Strip Mine[J]. Nonferrous Metals Science and Engineering, 2008, 22(4): 1-3.
    [8]SHEN Wen. Network Monitoring and Controlling System for Measurement Based on MODBUS[J]. Nonferrous Metals Science and Engineering, 2007, 21(2): 42-44.
    [9]ZHOU Ke-liang, LIANG Ling. Ration Pouring Control System for Lead Anode Plate Based on Profibus[J]. Nonferrous Metals Science and Engineering, 2006, 20(4): 21-23.
    [10]SONG Yu-chun, XU Lun-hui. The Design of ESP based on USB Interface[J]. Nonferrous Metals Science and Engineering, 2003, 17(1): 44-47.
  • Cited by

    Periodical cited type(1)

    1. 何若诗,刘鹏飞,张嘉诚,冯路路. Ni对水果辅助采摘设备用不锈钢组织及性能的影响. 南方金属. 2024(03): 42-45 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (110) PDF downloads (6) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return