Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
YAO Li, ZHONG Shengwen. High separation of positive electrode powder from aluminum foil and reduction leaching of positive electrode powder of waste lithium-ion batteries[J]. Nonferrous Metals Science and Engineering, 2024, 15(4): 479-486. DOI: 10.13264/j.cnki.ysjskx.2024.04.002
Citation: YAO Li, ZHONG Shengwen. High separation of positive electrode powder from aluminum foil and reduction leaching of positive electrode powder of waste lithium-ion batteries[J]. Nonferrous Metals Science and Engineering, 2024, 15(4): 479-486. DOI: 10.13264/j.cnki.ysjskx.2024.04.002

High separation of positive electrode powder from aluminum foil and reduction leaching of positive electrode powder of waste lithium-ion batteries

More Information
  • Received Date: May 20, 2023
  • Revised Date: October 04, 2023
  • Considering the strong binding force provided by polyvinylidene fluoride (PVDF), it is challenging to separate the positive electrode material from the aluminum foil. In this study, the positive electrode sheet was placed in heated ethylene glycol. As the temperature of ethylene glycol reached the melting point of the PVDF binder, PVDF gradually changed from a solid to a liquid state. At this point, its adhesive force on both the positive electrode material and aluminum foil decreased, allowing separation through the action of stirring forces. A detailed analysis of the forces acting on the positive electrode material was conducted during stirring in ethylene glycol, and the boundary layer theory was employed, proposing the Blasius solution for describing the boundary layer. The theoretical stirring linear velocity required for separating the aluminum foil from the positive electrode material was calculated. Fluid dynamics calculations demonstrated that the theoretical stirring linear velocity for separating positive electrode material in ethylene glycol was 5.08 m/s, corresponding to a rotational speed exceeding 441 r/min. When the rotational speed reached this value, the positive electrode material generated a net force greater than zero in ethylene glycol, enabling its separation from the aluminum foil. Experimental results showed that under conditions of heating at 180 ℃, stirring at 550 r/min, and a stirring time of 120 min, the delamination rate exceeded 93.00%, consistent with the theoretical rotational speed. The separated positive electrode powder was subjected to a sulfuric acid-catechol system for reduction and leaching. Ultimately, under the optimal conditions of a sulfuric acid concentration of 1.25 mol/L, catechol content of 5 g/L, a leaching temperature of 65 ℃, and a leaching time of 90 min, the leaching rates for lithium, nickel, cobalt, and manganese all surpassed 95.00%.

  • [1]
    王露, 冯天意, 崔鹏媛,等. 废旧锂离子电池正极材料中有价金属离子分离回收的技术研究现状[J]. 有色金属科学与工程, 2023, 14(6): 791-801.
    [2]
    甘涛, 宋卫锋, 刘勇, 等. 废旧电池电极材料的磁性分离机制及其提纯工艺[J]. 中国有色金属学报, 2021, 31(12): 3664-3674.
    [3]
    李铠镔, 刘付朋, 马帅兵, 等. 废旧特斯拉电池LiNi0.815Co0.15Al0.035O2正极物料选择性焙烧转型提锂[J]. 有色金属科学与工程, 2023, 14(1): 40-50, 134.
    [4]
    SOUDBAKHSH D, GILAKI M, LYNCH W, et al. Electrical response of mechanically damaged lithium-ion batteries[J]. Energies, 2020, 13(17): 4284.
    [5]
    KIM S, BANG J, YOO J, et al. A comprehensive review on the pretreatment process in lithium-ion battery recycling[J]. Journal of Cleaner Production, 2021, 294: 126329.
    [6]
    赖延清, 杨健, 张刚, 等. 废旧三元锂离子电池正极材料的淀粉还原浸出工艺及其动力学[J]. 中国有色金属学报, 2019, 29(1): 153-160.
    [7]
    郭乾坤,黄吉丽,周苗苗,等. 单晶 LiNi0.83Co0.1Mn0.07O2正极材料的合成及电化学性能[J]. 有色金属科学 与工程,2020,11(4): 23-28.
    [8]
    PAULINO J F, BUSNARDO N G, AFONSO J C. Recovery of valuable elements from spent Li-batteries[J]. Journal of Hazardous Materials, 2008, 150(3): 843-849.
    [9]
    宗毅, 熊道陵, 王露琦, 等. 废旧锂电池废料除铝及回收铝工艺研究[J]. 有色金属科学与工程, 2018, 9(5): 26-32.
    [10]
    NSHIZIRUNGU T, RANA M, JO Y T, et al. Recycling of NCM cathode material from spent lithium-ion batteries via polyvinyl chloride and chlorinated polyvinyl chloride in subcritical water: a comparative study[J]. Journal of Hazardous Materials, 2021, 414: 125575.
    [11]
    ORDOÑEZ J, GAGO E J, GIRARD A. Processes and technologies for the recycling and recovery of spent lithium-ion batteries[J]. Renewable and Sustainable Energy Reviews, 2016, 60: 195-205.
    [12]
    ROY J J, CAO B, MADHAVI S. A review on the recycling of spent lithium-ion batteries (LIBs) by the bioleaching approach[J]. Chemosphere, 2021, 282: 130944.
    [13]
    赖福林, 王玉琴, 马全新, 等. LiClO4预氧化Ni0.8Co0.17Al0.03(OH)2提升锂离子电池的循环稳定性[J]. 有色金属科学与工程, 2023, 14(1): 57-66.
    [14]
    胡国琛, 胡年香, 伍继君, 等. 锂离子电池正极材料中有价金属回收研究进展[J]. 中国有色金属学报, 2021, 31(11): 3320-3343.
    [15]
    蒋玲, 詹路, 张秋卓. 废旧三元电池正极活性材料酸性浸出液中钴镍锰锂的分离与回收[J]. 中国有色金属学报, 2020, 30(11): 2684-2694.
    [16]
    黄锦朝, 郭子霆, 肖青梅, 等. 石墨烯和碳纳米管二元复合导电剂对LiNi0.5Co0.2Mn0.3O2锂离子电池性能的影响[J]. 有色金属科学与工程, 2023, 14(3): 355-362.
    [17]
    JAKÓBCZYK P,BARTMAŃSKI M, RUDNICKA E. Locust bean gum as green and water-soluble binder for LiFePO4 and Li4Ti5O12 electrodes[J]. Journal of Applied Electrochemisty, 2021, 51(3): 359-371.
    [18]
    COSTA C M, LIZUNDIA E, LANCEROS-MENDEZ S. Polymers for advanced lithium-ion batteries: State of the art and future needs on polymers for the different battery components[J]. Progress in Energy and Combustion Science, 2020, 79: 100846.
    [19]
    黄红军, 黄秋森. 采用球磨-低温热处理-浮选法回收废旧锂电池中电极材料的机理[J]. 中国有色金属学报, 2019, 29(4): 878-886.
    [20]
    LEE W, MUHAMMAD S, SERGEY C, et al. Advances in the cathode materials for lithium rechargeable batteries[J]. Angewandte Chemie (International Ed.in English), 2020, 59(7): 2578-2605.
    [21]
    LIU K, YANG S L, LAI F Y, et al. Innovative electrochemical strategy to recovery of cathode and efficient lithium leaching from spent lithium-ion batteries[J]. ACS Applied Energy Materials, 2020, 3(5): 4767-4776.
    [22]
    邹金, 胡顺, 龙茜茜, 等. 多维度二元导电剂对LiNi0.5Co0.2Mn0.3O2电池性能的影响[J]. 有色金属科学与工程, 2022, 13(3): 63-68.
    [23]
    TIAN H Y, GUO Z Q, PAN J, et al. Comprehensive review on metallurgical recycling and cleaning of copper slag[J]. Resources, Conservation and Recycling, 2021, 168: 105366.
    [24]
    缪建麟, 王媛, 邵丹, 等. 锂离子电池LiNi0.5Co0.2Mn0.3O2废料直接回收及材料再生性能[J]. 中国有色金属学报, 2020, 30(9): 2171-2177.
    [25]
    XIAO J F, LI J, XU Z M. Challenges to future development of spent lithium ion batteries recovery from environmental and technological perspectives[J]. Environmental Science & Technology, 2020, 54(1): 9-25.
    [26]
    HUANG Y K, GENG Y B, HAN G H, et al. A perspective of stepwise utilization of hazardous zinc plant purification residue based on selective alkaline leaching of zinc[J]. Journal of Hazardous Materials, 2020, 389: 122090.
    [27]
    郭苗苗, 席晓丽, 张云河, 等. 报废动力电池镍钴锰酸锂三元正极材料高温氢还原-湿法冶金联用回收有价金属[J]. 中国有色金属学报, 2020, 30(6): 1415-1426.
    [28]
    陈卫晓, 高鹏, 张珊, 等. 单晶型镍锰钴三元正极材料的形成和失效机理研究进展[J]. 中国有色金属学报, 2021, 31(11): 3289-3302.
    [29]
    YANG Y, LEI S Y, SONG S L, et al. Stepwise recycling of valuable metals from Ni-rich cathode material of spent lithium-ion batteries[J]. Waste Management, 2020, 102: 131-138.
    [30]
    朱芬芬, 李金惠. 风冷式粉碎机粉碎手机边框板刀具磨损试验研究[J]. 润滑与密封, 2007(2): 32-35.
    [31]
    ZHANG S L, FORSSBERG E. Mechanical separation-oriented characterization of electronic scrap[J]. Resources, Conservation and Recycling, 1997, 21(4): 247-269.
    [32]
    LI J H, SHI P X, WANG Z F, et al. A combined recovery process of metals in spent lithium-ion batteries[J]. Chemosphere, 2009, 77(8): 1132-1136.
  • Related Articles

    [1]LAI Junquan, XIANG Zixiang, LI Yuqing, WU Caibin. Grinding kinetics study of nano-ceramic spheres as fine grinding medium[J]. Nonferrous Metals Science and Engineering, 2021, 12(3): 100-105. DOI: 10.13264/j.cnki.ysjskx.2021.03.013
    [2]WU Zhiqiang, FANG Xin, TONG Jiaqi, LIAO Ningning, XU Jindong, WU Caibin. Grinding energy consumption and particle size distribution characteristics of ground products with the nano-ceramic ball as the fine grinding medium[J]. Nonferrous Metals Science and Engineering, 2019, 10(5): 91-96. DOI: 10.13264/j.cnki.ysjskx.2019.05.014
    [3]TONG Jiaqi, FANG Xin, WU Zhiqiang, LIAO Ningning, XU Jindong, WU Caibin. Grinding energy consumption and particle size distribution characteristics of Hexagon as a fine grinding medium[J]. Nonferrous Metals Science and Engineering, 2019, 10(3): 86-91. DOI: 10.13264/j.cnki.ysjskx.2019.03.015
    [4]YE Jingsheng, LIAO Ningning, WU Zhiqiang, LIU Peng, SHI Guiming, WU Caibin. Grinding energy consumption and particle size distribution characteristics of steel forging under fine grinding medium[J]. Nonferrous Metals Science and Engineering, 2018, 9(6): 65-71. DOI: 10.13264/j.cnki.ysjskx.2018.06.011
    [5]ZHOU Yichao, ZHAO Ruquan, WU Caibin, SHI Guiming, YAN Faming, ZOU Chunlin. Effect of grinding concentration on product size distribution characteristics[J]. Nonferrous Metals Science and Engineering, 2016, 7(5): 93-97. DOI: 10.13264/j.cnki.ysjskx.2016.05.017
    [6]HU Hai-xiang, WANG Shengyou, FAN Zuo-peng, NIU Gui-qiang, WANG Pan-zhi, LIU Hai-long. Development of forged ball as a new grinding medium[J]. Nonferrous Metals Science and Engineering, 2015, 6(1): 85-89. DOI: 10.13264/j.cnki.ysjskx.2015.01.016
    [7]LIAO Lile, GUO Xueyi, WANG Qinmeng, TIAN Qinghua, ZHANG Yongzhu. Performance analysis of oxygen bottom blowing copper smelting process using METSIM[J]. Nonferrous Metals Science and Engineering, 2014, 5(5): 49-55. DOI: 10.13264/j.cnki.ysjskx.2014.05.009
    [8]LIN Shou-guang, XIAO Ling-ling. Application of a fast Susan algorithm to preliminary tungsten processing[J]. Nonferrous Metals Science and Engineering, 2013, 4(5): 122-126. DOI: 10.13264/j.cnki.ysjskx.2013.05.005
    [9]SHI Gui-ming, WU Cai-bin, XIAO Liang, LIU Yu. Experimental study of grinding system optimization for a tungsten polymetallic ore[J]. Nonferrous Metals Science and Engineering, 2013, 4(5): 79-84. DOI: 10.13264/j.cnki.ysjskx.2013.05.012
    [10]HU Jian-guo, MAO Shi-yi. The Way to Raise Grinding Efficiency[J]. Nonferrous Metals Science and Engineering, 2002, 16(2): 11-12,21.

Catalog

    Article Metrics

    Article views (80) PDF downloads (22) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return