Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
WEN Min, XU Ziqi, ZHANG Ke, LI Xuan, HU Junhui, LUO Hong, YIN Yanhong. Preparation of tungsten oxide/carbon macrofilms composite anode electrode and lithium storage performance[J]. Nonferrous Metals Science and Engineering, 2021, 12(4): 58-65. DOI: 10.13264/j.cnki.ysjskx.2021.04.008
Citation: WEN Min, XU Ziqi, ZHANG Ke, LI Xuan, HU Junhui, LUO Hong, YIN Yanhong. Preparation of tungsten oxide/carbon macrofilms composite anode electrode and lithium storage performance[J]. Nonferrous Metals Science and Engineering, 2021, 12(4): 58-65. DOI: 10.13264/j.cnki.ysjskx.2021.04.008

Preparation of tungsten oxide/carbon macrofilms composite anode electrode and lithium storage performance

More Information
  • Received Date: March 24, 2021
  • Published Date: August 30, 2021
  • Thanks to its high theoretical specific capacity (693 mAh/g), tungsten oxide (WO3) is a good substitute for anode material of lithium-ion batteries. However, WO3 suffers a large volume change during the process of lithium-ion removal/embedding, leading to the rapid decline of discharge specific capacity. Therefore, the cycle stability of WO3 anode electrode has been one of the research focuses. H-WO3/CMF and S-WO3/CMF composite electrodes were successfully synthesized on CMF substrate by hydrothermal method and spraying method, respectively. XRD results show that WO3 in H-WO3/CMF and S-WO3/CMF are categorized into monoclinic phase and hexagonal phase respectively. H-WO3/CMF and S-WO3/CMF were separately assembled into button cells for electrochemical performance test. The results show that the first discharge specific capacity of H-WO3/CMF was higher than that of S-WO3/CMF. When H-WO3/CMF was cycled at a rate of 0.2 C, the specific discharge capacity reached 635 mAh/g in the first cycle and 510 mAh/g in the 50 cycles, which still showed an upward trend. When S-WO3/CMF is cycled at 0.2 C, the specific discharge capacity in the first cycle is only 515 mAh/g, and the capacity decays rapidly in the subsequent cycle. Ac impedance test results show that the conductivity of H-WO3/CMF is higher than that of S-WO3/CMF. The research results show that H-WO3/CMF, as the negative electrode of lithium-ion battery, is expected to improve the electrochemical stability of WO3.
  • [1]
    YU S H, LEE S H, LEE D J, et al. Conversion reaction-based oxide nanomaterials for lithium ion battery anodes[J]. Small, 2015, 12(16): 2146-2172. http://europepmc.org/abstract/MED/26627913
    [2]
    WANG H Y, XIN H S, CAI C L, et al. Selective C3-C4 keto-alcohols production from cellulose hydrogenolysis over Ni-WOx/C catalysts[J]. ACS Catalysis, 2020, 10 (18): 10646-10660. doi: 10.1021/acscatal.0c02375
    [3]
    赵超男, 张文齐, 杨建铖, 等. 凹凸棒制备Si@C复合材料及其用于锂离子电池负极材料的电化学性能[J]. 有色金属科学与工程, 2020, 11(3): 52-58. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=202003007
    [4]
    ZHENG M, TANG H, HU Q, et al. Tungsten-based materials for lithium-ion batteries[J]. Advanced Functional Materials, 2018, 28 (20): 1707500. doi: 10.1002/adfm.201707500
    [5]
    ZHANG W, YUE L, ZHANG F, et al. One-step in situ synthesis of ultrathin tungsten oxide@carbon nanowire webs as an anode material for high performance[J]. Journal of Materials Chemistry A, 2015, 3 (11): 6102-6109. doi: 10.1039/C4TA06262K
    [6]
    POIZOT P, LARUELLE S, GRUGEON S, et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries[J]. Nature, 2000, 407 (6803): 496-499. doi: 10.1038/35035045
    [7]
    CHAO L, XIAO X, ZHENG C, et al. Preparation of hexagonal ultrathin WO3 nano-ribbons and their electrochemical performance as an anode material in lithium ion batteries[J]. Nano Research, 2016, 9(2): 435-441. doi: 10.1007/s12274-015-0924-6
    [8]
    HEO S, DAHLMAN C J, STALLER C M, et al. Enhanced coloration efficiency of electrochromic tungsten oxide nanorods by site selective occupation of sodium ions[J]. Nano Letters, 2020, 20(3): 2072-2079. doi: 10.1021/acs.nanolett.0c00052
    [9]
    LEE Y H, YUN J, SEO M, et al. Full-color-tunable nanophotonic device using electrochromic tungsten trioxide thin film[J]. Nano Letters, 2020, 20(8): 6084-6090. doi: 10.1021/acs.nanolett.0c02097
    [10]
    ZHANG W, SEO D H, CHEN T, et al. Kinetic pathways of ionic transport in fast-charging lithium titanate[J]. Science, 2020, 367 (6481): 1030-1034. doi: 10.1126/science.aax3520
    [11]
    钟采妮, 陈哲钦, 卢彦华, 等. 锂离子电池用CuFe2O4立方颗粒负极材料的合成及其电化学性能[J]. 有色金属科学与工程, 2020, 11(3): 59-64. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=202003008
    [12]
    JO C, LIM W G, DAO A H, et al. Tracking the confinement effect of highly dispersive carbon in a tungsten oxide/carbon nanocomposite: conversion anode materials in lithium ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(47): 24782-24789. doi: 10.1039/C7TA07979F
    [13]
    HE Y, GU M, XIAO H, et al. Atomistic conversion reaction mechanism of WO3 in secondary ion batteries of Li, Na, and Ca[J]. Angewandte Chemie, 2016, 55(21): 6244-6247. doi: 10.1002/anie.201601542
    [14]
    WANG L, XIE X, DINH K N, et al. Synthesis, characterizations, and utilization of oxygen-deficient metal oxides for lithium/sodium-ion batteries and supercapacitors[J]. Coordination Chemistry Reviews, 2019, 397: 138-167. doi: 10.1016/j.ccr.2019.06.015
    [15]
    DUAN X, XIAO S, WANG L, et al. Ionic liquid-modulated preparation of hexagonal tungsten trioxide mesocrystals for lithium-ion batteries[J]. Nanoscale, 2015, 7(6): 2230-2234. doi: 10.1039/C4NR05717A
    [16]
    CHEN Z, PENG Y, LIU F, et al. Hierarchical nanostructured WO3 with biomimetic proton channels and mixed ionic-electronic conductivity for electrochemical energy storage[J]. Nano Letters, 2015, 15 (10): 6802-6808. doi: 10.1021/acs.nanolett.5b02642
    [17]
    XIAO X, DING T P, YUAN L Y, et al. WO3-x /MoO3-x core/shell nanowires on carbon fabric as an anode for all-solid-state asymmetric supercapacitors[J]. Advanced Energy Materials, 2012, 2 (11): 1328-1332. doi: 10.1002/aenm.201200380
    [18]
    WU X, YAO S Y. Flexible electrode materials based on WO3 nanotube bundles for high performance energy storage devices[J]. Nano Energy, 2017, 42: 143-150. doi: 10.1016/j.nanoen.2017.10.058
    [19]
    HERDT T, DECKENBACH D, BRUNS M, et al. Tungsten oxide nanorod architectures as 3D anodes in binder-free lithium-ion batteries[J]. Nanoscale, 2019, 11(2): 598-610. doi: 10.1039/C8NR07636G
    [20]
    尹艳红, 吴子平, 赵曼, 等. 超细氧化钨的制备及其光催化性能研究[J]. 有色金属科学与工程, 2014, 5(3): 50-55. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201403009
    [21]
    童晖. 多级结构氧化钨基负极材料的制备及储锂性能研究[D]. 哈尔滨: 黑龙江大学, 2016.
    [22]
    WU Z P, WANG J N, MA J. Methanol-mediated growth of carbon nanotubes[J]. Carbon. 2009, 47(1): 324-327. doi: 10.1016/j.carbon.2008.09.034
    [23]
    薛娜. 缺陷氧化钨纳米复合材料的制备、表征及其应用研究[D]. 咸阳: 西北农林科技大学, 2017.
    [24]
    王磊. 微纳结构三氧化钨的可控制备及性能研究[D]. 合肥: 合肥工业大学, 2017.
    [25]
    WANG Z Y, LU Z X, GUO W, et al. A dendrite-free lithium/carbon nanotube hybrid for lithium-metal batteries[J]. Advanced Materials, 2021, 33(4): 2006702. doi: 10.1002/adma.202006702
    [26]
    LIU X B, XIAO Z C, LAI C G, et al. Three-dimensional carbon framework as high-proportion sulfur host for high-performance lithium-sulfur batteries[J]. Journal of Materials Science and Technology, 2020, 48: 84-91. doi: 10.1016/j.jmst.2020.03.001
  • Related Articles

    [1]ZHENG Ya, LIU Juan, YU Qiang, MU Yichen, ZHAO Xiaoyu, LI Xiaocheng. Preparation of micro-nano hierarchical Si/C composites by CO2 oxidation of porous Mg2Si and lithium storage properties[J]. Nonferrous Metals Science and Engineering, 2024, 15(2): 256-264. DOI: 10.13264/j.cnki.ysjskx.2024.02.012
    [2]WANG Lu, FENG Tianyi, CUI Pengyuan, SHEN Qingfeng, LIN Yan, YU Xiaohua. Status of technological research on the separation and recovery of valuable metal ions in cathode materials from spent lithium-ion battery[J]. Nonferrous Metals Science and Engineering, 2023, 14(6): 791-801. DOI: 10.13264/j.cnki.ysjskx.2023.06.006
    [3]HUANG Jinchao, GUO Ziting, XIAO Qingmei, ZHONG Shengwen. Effect of binary composite conductive agent with graphene and carbon nanotube on performance of LiNi0.5Co0.2Mn0.3O2 lithium-ion battery[J]. Nonferrous Metals Science and Engineering, 2023, 14(3): 355-362. DOI: 10.13264/j.cnki.ysjskx.2023.03.008
    [4]ZHANG Ke, LIU Dongxue, WEN Min, YIN Yanhong. Modification of tungsten oxide as an anode electrode for lithium-ion batteries[J]. Nonferrous Metals Science and Engineering, 2022, 13(6): 74-83. DOI: 10.13264/j.cnki.ysjskx.2022.06.010
    [5]LI Rui, CHEN Yu, DING Nengwen, LI Zhifeng, LI Xiaocheng. Preparation and electrochemical performance of Lithium-ion battery negative electrode material PSi@GO[J]. Nonferrous Metals Science and Engineering, 2022, 13(5): 16-22. DOI: 10.13264/j.cnki.ysjskx.2022.05.003
    [6]ZHONG Caini, CHEN Zheqin, LU Yanhua, LIU Jiaming, XIA Shubiao. A study on the synthesis and electrochemical properties of CuFe2O4 cubes as anode material for lithium-ion batteries[J]. Nonferrous Metals Science and Engineering, 2020, 11(3): 59-64. DOI: 10.13264/j.cnki.ysjskx.2020.03.008
    [7]ZHAO Chaonan, ZHANG Wenqi, YANG Jiancheng, SHANG Zhitong, LIANG Tongxiang, LI Xiaocheng. Preparation and lithium-storage performance of attapulgite-derived Si@C composite[J]. Nonferrous Metals Science and Engineering, 2020, 11(3): 52-58. DOI: 10.13264/j.cnki.ysjskx.2020.03.007
    [8]ZHAO Tianyu, SONG Yunfeng, LI Yongli, ZHAO Zhongwei, HE Lihua, CHEN Xingyu, LIU Xuheng. Recovery of lithium from leaching solution of anode materials in waste lithium-ion batteries by solvent extraction method[J]. Nonferrous Metals Science and Engineering, 2019, 10(1): 49-53. DOI: 10.13264/j.cnki.ysjskx.2019.01.008
    [9]PENG Wanwan, XU Chang, LI Zhifeng, FAN Fengsong, ZHANG Qian, WANG Chunxiang, ZHONG Shengwen. Effects of surface density and compaction density on properties of fast charge lithium ion battery[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 69-73. DOI: 10.13264/j.cnki.ysjskx.2017.03.011
    [10]LI Jin-hui, ZHENG Shun, XIONG Dao-ling, LI Ying, TANG Cong-lin, YANG Jin-xin. Methods for valuable resource recovery from cathode materials of spent lithium ion battery[J]. Nonferrous Metals Science and Engineering, 2013, 4(4): 29-35. DOI: 10.13264/j.cnki.ysjskx.2013.04.005
  • Cited by

    Periodical cited type(5)

    1. 刘冉,党鲜婷,彭雅婷,吴韬,韩飞. 激光熔覆CoCrNi/WC复合涂层的组织及性能研究. 稀有金属. 2025(01): 68-79 .
    2. 潘文瀚,许明三,韦铁平,叶建华,朱峰立,杨林沂. 选区激光熔化拱形点阵力学性能影响及优化. 有色金属科学与工程. 2025(01): 43-53 . 本站查看
    3. 侯少杰,李春燕,李春玲,张强,陈佳欣,程志强. 大尺寸非晶合金的成分设计和新制备方法研究进展. 稀有金属. 2024(02): 240-253 .
    4. 张莹莹,王学兵,熊宁,柳学全,赵虹淳. 丝电爆法制备球形W-25%Re合金粉末的组织和性能研究. 稀有金属. 2024(10): 1367-1377 .
    5. 郭鑫涛,杨亚琴,蔺温杰,郑建民,张博宇,张幸悦,苗芳,刘斌. 难熔金属材料增材制造工艺研究进展. 铜业工程. 2023(06): 1-12 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (149) PDF downloads (6) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return