Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
ZHANG Yuanjing, LIU Zhaoting, ZHU Shigui, LU Guimin. Study on Li-Mg co-deposition mechanism in LiCl-KCl-MgCl2 melt[J]. Nonferrous Metals Science and Engineering, 2023, 14(3): 311-317. DOI: 10.13264/j.cnki.ysjskx.2023.03.003
Citation: ZHANG Yuanjing, LIU Zhaoting, ZHU Shigui, LU Guimin. Study on Li-Mg co-deposition mechanism in LiCl-KCl-MgCl2 melt[J]. Nonferrous Metals Science and Engineering, 2023, 14(3): 311-317. DOI: 10.13264/j.cnki.ysjskx.2023.03.003

Study on Li-Mg co-deposition mechanism in LiCl-KCl-MgCl2 melt

More Information
  • Received Date: May 25, 2022
  • Revised Date: June 13, 2022
  • Available Online: June 30, 2023
  • Li-Mg alloys, as cathode materials for lithium batteries, have broad application prospects in the field of new energy, and the preparation of Li-Mg alloys by molten salt electrolysis has great advantages. The electrochemical behavior of Mg2+ on a tungsten electrode in LiCl-KCl-MgCl2 melt and the Li-Mg co-deposition process were studied by a three-electrode system, respectively. The effect of MgCl2 concentration on electrolytic co-deposition of Li-Mg was also investigated. The experimental results of square wave voltammetry and timing current method show that the one-step two electrons reduction of Mg2+ to metallic Mg on the tungsten electrode is an instantaneous nucleation process, which is not affected by temperature. The results of the timing potentiometric experiment show that with the increasing concentration of MgCl2, the cathodic current density required for the electrolytic co-deposition of Li-Mg from LiCl-KCl-MgCl2 melt is gradually increased. When the MgCl2 concentration in the LiCl-KCl-MgCl2 melt is 5%, the minimum cathodic current density to achieve Li-Mg co-deposition is 0.287 A/cm2. The galvanostatic electrolysis results show that when the MgCl2 concentration is less than or equal to 5%, the metal Mg content in the Li-Mg product increases with MgCl2 concentration in the melt. When the MgCl2 concentration reaches 10%, electrolysis only obtains metal Mg.
  • [1]
    KRAUSKOPF T, MOGWITZ B, ROSENBACH C, et al. Diffusion limitation of lithium metal and Li-Mg alloy anodes on LLZO type solid electrolytes as a function of temperature and pressure[J]. Advanced Energy Materials, 2019, 9(44): 1902568. doi: 10.1002/aenm.201902568
    [2]
    YANG C P, XIE H, PING W W, et al. An electron/ion dual-conductive alloy framework for high-rate and high-capacity solid-state lithium-metal batteries[J]. Advanced Materials, 2019, 31(3): 1804815. doi: 10.1002/adma.201804815
    [3]
    李晓琳, 杜洋, 涂继国, 等. NaCl-KCl熔盐中TiB2阳极溶解和电化学还原行为研究[J]. 江西冶金, 2021, 41(1): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-JXYE202101001.htm
    [4]
    KONG L L, WANG L, NI Z C, et al. Lithium-magnesium alloy as a stable anode for lithium-sulfur battery[J]. Advanced Functional Materials, 2019, 29(13): 1808756. doi: 10.1002/adfm.201808756
    [5]
    OBROVAC M N, CHEVRIER V L. Alloy negative electrodes for Li-ion batteries[J]. Chemical Reviews, 2014, 114(23): 11444-11502. doi: 10.1021/cr500207g
    [6]
    CHENG X, ZHANG R, ZHAO C, et al. Toward safe lithium metal anode in rechargeable batteries: a review[J]. Chemical Reviews, 2017, 117(15): 10403-10473. doi: 10.1021/acs.chemrev.7b00115
    [7]
    ZHAO M, BROUWER J C, SLOOF W G, et al. Surface segregation of ternary alloys: effect of the interaction between solute elements[J]. Advanced Materials Interfaces, 2020, 7(6): 1901784. doi: 10.1002/admi.201901784
    [8]
    SUI S, TAN H, CHEN J, et al. The influence of laves phases on the room temperature tensile properties of inconel 718 fabricated by powder feeding laser additive manufacturing[J]. Acta Materialia, 2019, 164: 413-427. doi: 10.1016/j.actamat.2018.10.032
    [9]
    ZHANG F, SHEN J, YAN X, et al. Homogenization heat treatment of 2099 Al-Li alloy[J]. Rare Metals, 2014, 33(1): 28-36. doi: 10.1007/s12598-013-0099-9
    [10]
    MOHAMEDI M, KAWAGUCHI N, SATO Y, et al. Electrochemical study of the mechanism of formation of the surface alloy of aluminum-niobium in LiCl-KCl eutectic melt[J]. Journal of Alloys and Compounds, 1999, 287(1/2): 91-97.
    [11]
    QIAO H, NOHIRA T, ITO Y. Electrochemical formation of Pd-La alloy films in a LiF-NaF-KF-LaF3 melt[J]. Journal of Alloys and Compounds, 2003, 359(1/2): 230-235.
    [12]
    YASUDA K, KONDO K, NOHIRA T, et al. Electrochemical pormation of Pr-Ni alloys in LiF-CaF2-PrF3 and NaCl-KCl-PrCl3 melts[J]. Journal of the Electrochemical Society, 2014, 161(7): D3097-D3104. doi: 10.1149/2.012407jes
    [13]
    康佳, 闫奇操, 于兵, 等. LaCl3-KCl熔盐体系物化性质研究[J]. 有色金属科学与工程, 2022, 13(3): 145-151. doi: 10.13264/j.cnki.ysjskx.2022.03.018
    [14]
    杨凤丽, 王浩然, 杨少华, 等. LiF-SrF2-SrO熔盐体系中Sr2+电化学行为的研究[J]. 有色金属科学与工程, 2016, 7(5): 33-36, 66. doi: 10.13264/j.cnki.ysjskx.2016.05.006
    [15]
    杨少华, 林明, 刘增威, 等. LiF-CaF2-BaF2-ZrO2熔盐中Zr4+在钨电极上的电化学还原机理[J]. 有色金属科学与工程, 2017, 8(5): 70-75. doi: 10.13264/j.cnki.ysjskx.2017.05.010
    [16]
    LIU Y L, YUAN L Y, YE G A, et al. Electrochemical extraction of samarium from LiCl-KCl melt by forming Sm-Zn alloys[J]. Electrochimica Acta, 2014, 120: 369-378. doi: 10.1016/j.electacta.2013.12.081
    [17]
    田亚斌, 董泉, 叶昌美, 等. NaCl-KCl-MgCl2熔盐Mg2+在钨电极上的电化学还原机理[J]. 有色金属科学与工程, 2019, 10(2): 13-18. doi: 10.13264/j.cnki.ysjskx.2019.02.003
    [18]
    LIU Z T, LU G M, YU J G. Electrochemical behavior of magnesium ions in chloride melt[J]. Ionics, 2019, 25(6): 2719-2727.
    [19]
    YONG D Y, ZHANG M L, HAN W, et al. Electrochemical formation of Mg-Li alloys at solid magnesium electrode from LiCl-KCl melts[J]. Electrochimica Acta, 2008, 53(8): 3323-3328.
    [20]
    TANG H, YAN Y D, ZHANG M L, et al. Electrochemistry of MgCl2 in LiCl-KCl eutectic melts[J]. Acta Physico-Chimica Sinica, 2013, 29(8): 1698-1704.
    [21]
    YONG D Y, ZHANG M L, XUE Y, et al. Study on the preparation of Mg-Li-Zn alloys by electrochemical codeposition from LiCl-KCl-MgCl2-ZnCl2 melts[J]. Electrochimica Acta, 2009, 54(12): 3387-3393.
    [22]
    LI S L, CHE Y S, LI C Y, et al. Study on the electrochemical behavior of Mg and Al ions in LiCl-KCl melt and preparation of Mg-Al alloy[J]. Journal of Magnesium and Alloys, 2020, 10(3): 721-729.
  • Related Articles

    [1]MIN Dingwei, CHEN Gong, WEN Tanggen, SHI Zhongning, HUANG Yipeng, YANG Shaohua. Electrochemical mechanism of copper electrodeposition in NaCl-KCl-MgCl2-Cu2S melts[J]. Nonferrous Metals Science and Engineering, 2023, 14(2): 182-188. DOI: 10.13264/j.cnki.ysjskx.2023.02.004
    [2]LIU Zhijun, PENG Wanwan, LI Zhifeng, WANG Chunxiang, ZHANG Qian, ZHONG Shengwen. Effect of niobium doping on the electrochemical performance of nickel-based cathode materials[J]. Nonferrous Metals Science and Engineering, 2020, 11(2): 89-96. DOI: 10.13264/j.cnki.ysjskx.2020.02.013
    [3]HU Wei, ZHONG Shengwen, LI Xiaoyan, HUANG Jingbiao, PENG Kangchun, RAO Xianfa, QIU Shitao. The study of synthetize and electrochemical properties in LiNi0.55Co0.15Mn0.30O2 cathode material[J]. Nonferrous Metals Science and Engineering, 2019, 10(3): 54-57. DOI: 10.13264/j.cnki.ysjskx.2019.03.009
    [4]TIAN Yabin, DONG Quan, YE Changmei, HUANG Jingming, WANG Zhaowen, YANG Fengli, YANG Shaohua. Electrochemical reduction mechanism of NaCl-KCl-MgCl2 molten salt Mg2+ on tungsten electrode[J]. Nonferrous Metals Science and Engineering, 2019, 10(2): 13-18. DOI: 10.13264/j.cnki.ysjskx.2019.02.003
    [5]QIU Shitao, ZHONG Shengwen, LI Tingting, YANG Jinmeng, TIAN Feng. Study on the electrochemical performance of Cu-added LiNi0.6Co0.2Mn0.2O2[J]. Nonferrous Metals Science and Engineering, 2018, 9(5): 21-25. DOI: 10.13264/j.cnki.ysjskx.2018.05.004
    [6]LI Linshan, YANG Shaohua, ZHAO Yujuan, WANG Zhaowen. Determination of La (Ⅲ) in LiCl-KCl eutectic by CP electrochemical method[J]. Nonferrous Metals Science and Engineering, 2017, 8(6): 1-6. DOI: 10.13264/j.cnki.ysjskx.2017.06.001
    [7]Yang Fengli, Wang Haoran, Yang Shaohua, Wang Jun, Lai Xiaohui. The Study of Electrochemical Behavior of Sr2+ in LiF-SrF2-SrO Molten Salt System[J]. Nonferrous Metals Science and Engineering, 2016, 7(5): 33-36, 66. DOI: 10.13264/j.cnki.ysjskx.2016.05.006
    [8]SONG Jin-yang, YE Hong-qi, DONG Hong, ZHOU Wan-zhu, DU Yu-min, HAO Meng-qiu, QIN Tao. Mg-doping and electrochemical properties of Li (Ni1/3Co1/3Mn1/3) O2 cathode material[J]. Nonferrous Metals Science and Engineering, 2013, 4(3): 30-33. DOI: 10.13264/j.cnki.ysjskx.2013.03.001
    [9]XU Bao-he, WU Tian-tian, ZHONG Sheng-wen, ZHANG Qian. Comparative study of Si-doped Li[Li0.15Mn0.575Ni0.275]1-xSixO2 prepared by ion exchange[J]. Nonferrous Metals Science and Engineering, 2012, 3(2): 24-27. DOI: 10.13264/j.cnki.ysjskx.2012.02.003
    [10]ZHANG Sheng-wen, WANG Yu′e, ZHANG Qian, QIAO Xiao-ni. Synthesis and Electrochemical Properties of LiNi0.5Mn0.5O2 as Cathode Material for AA Lithium Ion Batteries[J]. Nonferrous Metals Science and Engineering, 2010, 1(02): 11-15. DOI: 10.13264/j.cnki.ysjskx.2010.06.016
  • Cited by

    Periodical cited type(8)

    1. 张明鲲,杨敏,王宇,赵祥,井德强. 热处理对高速列车用7005铝合金焊接接头应力腐蚀敏感性的影响. 金属热处理. 2023(08): 166-171 .
    2. 马思怡,张伟健,苏睿明,李广龙,曲迎东,李荣德. 7xxx系铝合金回归再时效的研究现状. 有色金属科学与工程. 2022(02): 38-50 . 本站查看
    3. 李晓含,贺嘉宁,苏睿明,杨玉萍,聂赛男,谭兵. 双级时效对7075合金应力腐蚀性能影响. 有色金属科学与工程. 2022(03): 69-75 . 本站查看
    4. 邱哲生,陈俊宇,李家奇,杨明,罗安民,赵艳波,严继康. 7075铝合金下摆臂模锻锻坯铸造工艺模拟仿真. 云南冶金. 2021(03): 86-90 .
    5. 邱哲生,陈俊宇,李家奇,杨明,罗安民,赵艳波,严继康. 7075铝合金下摆臂模锻锻坯铸造工艺模拟仿真. 云南冶金. 2021(04): 83-87 .
    6. 邱小云,王冀恒. 双重封闭对铝锂合金阳极氧化膜耐蚀性的影响. 兵器材料科学与工程. 2021(05): 120-125 .
    7. 陈蔚清,徐观明,崔紫依,余家甜,张雪辉,王春明. 超声滚压处理7B85合金的显微组织和力学性能. 有色金属科学与工程. 2021(06): 80-87 . 本站查看
    8. 陈昭,郑英,朱晨,王建辉,杨冠恒,林高用. 预拉伸对7075铝合金中厚板几何精度和力学性能的影响. 有色金属科学与工程. 2019(06): 40-47 . 本站查看

    Other cited types(8)

Catalog

    Article Metrics

    Article views (177) PDF downloads (50) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return