Citation: | ZHANG Yuanjing, LIU Zhaoting, ZHU Shigui, LU Guimin. Study on Li-Mg co-deposition mechanism in LiCl-KCl-MgCl2 melt[J]. Nonferrous Metals Science and Engineering, 2023, 14(3): 311-317. DOI: 10.13264/j.cnki.ysjskx.2023.03.003 |
[1] |
KRAUSKOPF T, MOGWITZ B, ROSENBACH C, et al. Diffusion limitation of lithium metal and Li-Mg alloy anodes on LLZO type solid electrolytes as a function of temperature and pressure[J]. Advanced Energy Materials, 2019, 9(44): 1902568. doi: 10.1002/aenm.201902568
|
[2] |
YANG C P, XIE H, PING W W, et al. An electron/ion dual-conductive alloy framework for high-rate and high-capacity solid-state lithium-metal batteries[J]. Advanced Materials, 2019, 31(3): 1804815. doi: 10.1002/adma.201804815
|
[3] |
李晓琳, 杜洋, 涂继国, 等. NaCl-KCl熔盐中TiB2阳极溶解和电化学还原行为研究[J]. 江西冶金, 2021, 41(1): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-JXYE202101001.htm
|
[4] |
KONG L L, WANG L, NI Z C, et al. Lithium-magnesium alloy as a stable anode for lithium-sulfur battery[J]. Advanced Functional Materials, 2019, 29(13): 1808756. doi: 10.1002/adfm.201808756
|
[5] |
OBROVAC M N, CHEVRIER V L. Alloy negative electrodes for Li-ion batteries[J]. Chemical Reviews, 2014, 114(23): 11444-11502. doi: 10.1021/cr500207g
|
[6] |
CHENG X, ZHANG R, ZHAO C, et al. Toward safe lithium metal anode in rechargeable batteries: a review[J]. Chemical Reviews, 2017, 117(15): 10403-10473. doi: 10.1021/acs.chemrev.7b00115
|
[7] |
ZHAO M, BROUWER J C, SLOOF W G, et al. Surface segregation of ternary alloys: effect of the interaction between solute elements[J]. Advanced Materials Interfaces, 2020, 7(6): 1901784. doi: 10.1002/admi.201901784
|
[8] |
SUI S, TAN H, CHEN J, et al. The influence of laves phases on the room temperature tensile properties of inconel 718 fabricated by powder feeding laser additive manufacturing[J]. Acta Materialia, 2019, 164: 413-427. doi: 10.1016/j.actamat.2018.10.032
|
[9] |
ZHANG F, SHEN J, YAN X, et al. Homogenization heat treatment of 2099 Al-Li alloy[J]. Rare Metals, 2014, 33(1): 28-36. doi: 10.1007/s12598-013-0099-9
|
[10] |
MOHAMEDI M, KAWAGUCHI N, SATO Y, et al. Electrochemical study of the mechanism of formation of the surface alloy of aluminum-niobium in LiCl-KCl eutectic melt[J]. Journal of Alloys and Compounds, 1999, 287(1/2): 91-97.
|
[11] |
QIAO H, NOHIRA T, ITO Y. Electrochemical formation of Pd-La alloy films in a LiF-NaF-KF-LaF3 melt[J]. Journal of Alloys and Compounds, 2003, 359(1/2): 230-235.
|
[12] |
YASUDA K, KONDO K, NOHIRA T, et al. Electrochemical pormation of Pr-Ni alloys in LiF-CaF2-PrF3 and NaCl-KCl-PrCl3 melts[J]. Journal of the Electrochemical Society, 2014, 161(7): D3097-D3104. doi: 10.1149/2.012407jes
|
[13] |
康佳, 闫奇操, 于兵, 等. LaCl3-KCl熔盐体系物化性质研究[J]. 有色金属科学与工程, 2022, 13(3): 145-151. doi: 10.13264/j.cnki.ysjskx.2022.03.018
|
[14] |
杨凤丽, 王浩然, 杨少华, 等. LiF-SrF2-SrO熔盐体系中Sr2+电化学行为的研究[J]. 有色金属科学与工程, 2016, 7(5): 33-36, 66. doi: 10.13264/j.cnki.ysjskx.2016.05.006
|
[15] |
杨少华, 林明, 刘增威, 等. LiF-CaF2-BaF2-ZrO2熔盐中Zr4+在钨电极上的电化学还原机理[J]. 有色金属科学与工程, 2017, 8(5): 70-75. doi: 10.13264/j.cnki.ysjskx.2017.05.010
|
[16] |
LIU Y L, YUAN L Y, YE G A, et al. Electrochemical extraction of samarium from LiCl-KCl melt by forming Sm-Zn alloys[J]. Electrochimica Acta, 2014, 120: 369-378. doi: 10.1016/j.electacta.2013.12.081
|
[17] |
田亚斌, 董泉, 叶昌美, 等. NaCl-KCl-MgCl2熔盐Mg2+在钨电极上的电化学还原机理[J]. 有色金属科学与工程, 2019, 10(2): 13-18. doi: 10.13264/j.cnki.ysjskx.2019.02.003
|
[18] |
LIU Z T, LU G M, YU J G. Electrochemical behavior of magnesium ions in chloride melt[J]. Ionics, 2019, 25(6): 2719-2727.
|
[19] |
YONG D Y, ZHANG M L, HAN W, et al. Electrochemical formation of Mg-Li alloys at solid magnesium electrode from LiCl-KCl melts[J]. Electrochimica Acta, 2008, 53(8): 3323-3328.
|
[20] |
TANG H, YAN Y D, ZHANG M L, et al. Electrochemistry of MgCl2 in LiCl-KCl eutectic melts[J]. Acta Physico-Chimica Sinica, 2013, 29(8): 1698-1704.
|
[21] |
YONG D Y, ZHANG M L, XUE Y, et al. Study on the preparation of Mg-Li-Zn alloys by electrochemical codeposition from LiCl-KCl-MgCl2-ZnCl2 melts[J]. Electrochimica Acta, 2009, 54(12): 3387-3393.
|
[22] |
LI S L, CHE Y S, LI C Y, et al. Study on the electrochemical behavior of Mg and Al ions in LiCl-KCl melt and preparation of Mg-Al alloy[J]. Journal of Magnesium and Alloys, 2020, 10(3): 721-729.
|
[1] | MIN Dingwei, CHEN Gong, WEN Tanggen, SHI Zhongning, HUANG Yipeng, YANG Shaohua. Electrochemical mechanism of copper electrodeposition in NaCl-KCl-MgCl2-Cu2S melts[J]. Nonferrous Metals Science and Engineering, 2023, 14(2): 182-188. DOI: 10.13264/j.cnki.ysjskx.2023.02.004 |
[2] | LIU Zhijun, PENG Wanwan, LI Zhifeng, WANG Chunxiang, ZHANG Qian, ZHONG Shengwen. Effect of niobium doping on the electrochemical performance of nickel-based cathode materials[J]. Nonferrous Metals Science and Engineering, 2020, 11(2): 89-96. DOI: 10.13264/j.cnki.ysjskx.2020.02.013 |
[3] | HU Wei, ZHONG Shengwen, LI Xiaoyan, HUANG Jingbiao, PENG Kangchun, RAO Xianfa, QIU Shitao. The study of synthetize and electrochemical properties in LiNi0.55Co0.15Mn0.30O2 cathode material[J]. Nonferrous Metals Science and Engineering, 2019, 10(3): 54-57. DOI: 10.13264/j.cnki.ysjskx.2019.03.009 |
[4] | TIAN Yabin, DONG Quan, YE Changmei, HUANG Jingming, WANG Zhaowen, YANG Fengli, YANG Shaohua. Electrochemical reduction mechanism of NaCl-KCl-MgCl2 molten salt Mg2+ on tungsten electrode[J]. Nonferrous Metals Science and Engineering, 2019, 10(2): 13-18. DOI: 10.13264/j.cnki.ysjskx.2019.02.003 |
[5] | QIU Shitao, ZHONG Shengwen, LI Tingting, YANG Jinmeng, TIAN Feng. Study on the electrochemical performance of Cu-added LiNi0.6Co0.2Mn0.2O2[J]. Nonferrous Metals Science and Engineering, 2018, 9(5): 21-25. DOI: 10.13264/j.cnki.ysjskx.2018.05.004 |
[6] | LI Linshan, YANG Shaohua, ZHAO Yujuan, WANG Zhaowen. Determination of La (Ⅲ) in LiCl-KCl eutectic by CP electrochemical method[J]. Nonferrous Metals Science and Engineering, 2017, 8(6): 1-6. DOI: 10.13264/j.cnki.ysjskx.2017.06.001 |
[7] | Yang Fengli, Wang Haoran, Yang Shaohua, Wang Jun, Lai Xiaohui. The Study of Electrochemical Behavior of Sr2+ in LiF-SrF2-SrO Molten Salt System[J]. Nonferrous Metals Science and Engineering, 2016, 7(5): 33-36, 66. DOI: 10.13264/j.cnki.ysjskx.2016.05.006 |
[8] | SONG Jin-yang, YE Hong-qi, DONG Hong, ZHOU Wan-zhu, DU Yu-min, HAO Meng-qiu, QIN Tao. Mg-doping and electrochemical properties of Li (Ni1/3Co1/3Mn1/3) O2 cathode material[J]. Nonferrous Metals Science and Engineering, 2013, 4(3): 30-33. DOI: 10.13264/j.cnki.ysjskx.2013.03.001 |
[9] | XU Bao-he, WU Tian-tian, ZHONG Sheng-wen, ZHANG Qian. Comparative study of Si-doped Li[Li0.15Mn0.575Ni0.275]1-xSixO2 prepared by ion exchange[J]. Nonferrous Metals Science and Engineering, 2012, 3(2): 24-27. DOI: 10.13264/j.cnki.ysjskx.2012.02.003 |
[10] | ZHANG Sheng-wen, WANG Yu′e, ZHANG Qian, QIAO Xiao-ni. Synthesis and Electrochemical Properties of LiNi0.5Mn0.5O2 as Cathode Material for AA Lithium Ion Batteries[J]. Nonferrous Metals Science and Engineering, 2010, 1(02): 11-15. DOI: 10.13264/j.cnki.ysjskx.2010.06.016 |
1. |
张明鲲,杨敏,王宇,赵祥,井德强. 热处理对高速列车用7005铝合金焊接接头应力腐蚀敏感性的影响. 金属热处理. 2023(08): 166-171 .
![]() | |
2. |
马思怡,张伟健,苏睿明,李广龙,曲迎东,李荣德. 7xxx系铝合金回归再时效的研究现状. 有色金属科学与工程. 2022(02): 38-50 .
![]() | |
3. |
李晓含,贺嘉宁,苏睿明,杨玉萍,聂赛男,谭兵. 双级时效对7075合金应力腐蚀性能影响. 有色金属科学与工程. 2022(03): 69-75 .
![]() | |
4. |
邱哲生,陈俊宇,李家奇,杨明,罗安民,赵艳波,严继康. 7075铝合金下摆臂模锻锻坯铸造工艺模拟仿真. 云南冶金. 2021(03): 86-90 .
![]() | |
5. |
邱哲生,陈俊宇,李家奇,杨明,罗安民,赵艳波,严继康. 7075铝合金下摆臂模锻锻坯铸造工艺模拟仿真. 云南冶金. 2021(04): 83-87 .
![]() | |
6. |
邱小云,王冀恒. 双重封闭对铝锂合金阳极氧化膜耐蚀性的影响. 兵器材料科学与工程. 2021(05): 120-125 .
![]() | |
7. |
陈蔚清,徐观明,崔紫依,余家甜,张雪辉,王春明. 超声滚压处理7B85合金的显微组织和力学性能. 有色金属科学与工程. 2021(06): 80-87 .
![]() | |
8. |
陈昭,郑英,朱晨,王建辉,杨冠恒,林高用. 预拉伸对7075铝合金中厚板几何精度和力学性能的影响. 有色金属科学与工程. 2019(06): 40-47 .
![]() |