Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
ZOU Chengjun, HONG Jiabin, WU Yonglin, WANG Chunxiang, LI Zhifeng. Electrodeposition synthesis of Ni/Ni(OH)2/PANI composites film and electrochemical properties[J]. Nonferrous Metals Science and Engineering, 2023, 14(2): 202-209. DOI: 10.13264/j.cnki.ysjskx.2023.02.006
Citation: ZOU Chengjun, HONG Jiabin, WU Yonglin, WANG Chunxiang, LI Zhifeng. Electrodeposition synthesis of Ni/Ni(OH)2/PANI composites film and electrochemical properties[J]. Nonferrous Metals Science and Engineering, 2023, 14(2): 202-209. DOI: 10.13264/j.cnki.ysjskx.2023.02.006

Electrodeposition synthesis of Ni/Ni(OH)2/PANI composites film and electrochemical properties

More Information
  • Received Date: January 09, 2022
  • Available Online: May 05, 2023
  • In this paper, Ni/Ni(OH)2/PANI electrode materials were synthesized on Cu foil substrates by the electrodeposition method. The Ni/Ni(OH)2 nanolayer was firstly prepared on the Cu foil surface by the electrodeposition method, then the PANI layer was deposited on the Ni/Ni(OH)2 surface via the electrochemical polymerization method. The morphology, structure and electrochemical properties of Ni/Ni(OH)2/PANI were investigated by SEM, TEM, FT-IR, XPS, CV, GCD and EIS. The results showed that the Ni/Ni(OH)2/PANI electrode materials had a high specific capacitance and excellent cycle performance. The Ni/Ni(OH)2/PANI electrode materials had an outstanding specific capacitance of 1 400 F/g at 1 A/g, excellent rate capability with a capacitance retention rate of 62.7% from 1 to 10 A/g and good cycling stability with a capacitance retention rate of 76% after 2 000 cycles. PANI layer deposited on Ni/Ni(OH)2 surface could reduce the charge transfer impedance of the electrode surface and protect the electrode, thus improving the electrochemical cycle performance of the electrode.
  • [1]
    XIONG X H, DING D, CHEN D C, et al. Three-dimensional ultrathin Ni(OH)2 nanosheets grown on nickel foam for high-performance supercapacitors[J]. Nano Energy, 2015, 11: 154-161. doi: 10.1016/j.nanoen.2014.10.029
    [2]
    ZHANG Z G, HUO H, WANG L G, et al. Stacking fault disorder induced by Mn doping in Ni(OH)2 for supercapacitor electrodes[J]. Chemical Engineering Journal, 2021, 412: 128617. doi: 10.1016/j.cej.2021.128617
    [3]
    LI X Y, CHEN R R, ZHAO Y H, et al. Layer-by-layer inkjet printing GO film anchored Ni(OH)2 nanoflakes for high-performance supercapacitors[J]. Chemical Engineering Journal, 2019, 375: 121988. doi: 10.1016/j.cej.2019.121988
    [4]
    HUANG Y, BUFFA A, DENG H Q, et al. Ultrafine Ni(OH)2 nanoplatelets grown on 3D graphene hydrogel fabricated by electrochemical exfoliation for high-performance battery-type asymmetric supercapacitor applications[J]. Journal of Power Sources, 2019, 439: 227046. doi: 10.1016/j.jpowsour.2019.227046
    [5]
    AHMAD MOZAFFARI S, MAHMOUDI NAJAFI S H, NOROUZI Z. Hierarchical NiO@Ni(OH)2 nanoarrays as high-performance supercapacitor electrode material[J]. Electrochimica Acta, 2021, 368: 137633. doi: 10.1016/j.electacta.2020.137633
    [6]
    强云玥, 钱炜, 王震, 等. 基于不同质量比的石墨烯与氢氧化镍电极材料性能分析[J]. 电子器件, 2019, 42(2): 276-280. doi: 10.3969/j.issn.1005-9490.2019.02.002
    [7]
    LIANG W J, WANG S L, ZHANG Y X, et al. β-Ni(OH)2 nanosheets coating on 3D flower-like α-Ni(OH)2 as high-performance electrodes for asymmetric supercapacitor and Ni/MH battery[J]. Journal of Alloys and Compounds, 2020, 849: 156616. doi: 10.1016/j.jallcom.2020.156616
    [8]
    WANG H L, CASALONGUE H S, LIANG Y Y, et al. Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials[J]. Journal of the American Chemical Society, 2010, 132(21): 7472-7477. doi: 10.1021/ja102267j
    [9]
    ZHANG L, LI G H, JING L L, et al. Controllable and fast growth of ultrathin α-Ni(OH)2 nanosheets on polydopamine based N-doped carbon spheres for supercapacitors application[J]. Synthetic Metals, 2020, 270: 116580. doi: 10.1016/j.synthmet.2020.116580
    [10]
    ZHAO C H, HAN S F, DING Y Z, et al. One-step synthesis of amino acid-derived HTC/NiO/Ni(OH)2@Ni cathode for high performance supercapacitors[J]. Applied Surface Science, 2021, 558: 149853. doi: 10.1016/j.apsusc.2021.149853
    [11]
    徐艳辉, 张倩, 王晓琳. 氢氧化镍电极材料研究进展[J]. 电池工业, 2009, 14(6): 416-420. doi: 10.3969/j.issn.1008-7923.2009.06.013
    [12]
    MADHUMITA B, KUMAR R, IVIWE A, et al. High-performance supercapacitors based on S-doped polyaniline nanotubes decorated with Ni(OH)2 nanosponge and onion-like carbons derived from used car tyres[J]. Electrochimica Acta, 2020, 342: 136111. doi: 10.1016/j.electacta.2020.136111
    [13]
    ZHANG J L, SHI L, LIU H D, et al. Utilizing polyaniline to dominate the crystal phase of Ni(OH)2 and its effect on the electrochemical property of polyaniline/Ni(OH)2 composite[J]. Journal of Alloys and Compounds, 2015, 651: 126-134. doi: 10.1016/j.jallcom.2015.08.090
    [14]
    HUO Y Q, LI C H. Capacitive properties of Polyaniline/Nickel hydroxide composites prepared by using 4-amino thiophenol as the structure directing agent[J]. Applied Mechanics and Materials, 2014, 490/491: 3-7. doi: 10.4028/www.scientific.net/AMM.490-491.3
    [15]
    VISWANATHAN A, SHETTY A N. The high energy supercapacitor from rGO/Ni(OH)2/PANI nanocomposite with methane sulfonic acid as dopant[J]. Journal of Colloid and Interface Science, 2019, 557: 367-380. doi: 10.1016/j.jcis.2019.09.036
    [16]
    SHANGGUAN E B, LI J, GUO D, et al. A comparative study of structural and electrochemical properties of high-density aluminum substituted α-nickel hydroxide containing different interlayer anions[J]. Journal of Power Sources, 2015, 282: 158-168. doi: 10.1016/j.jpowsour.2015.02.059
    [17]
    LIU X M, ZENG W, ZHAO J J, et al. Preparation and anti-leakage properties of hydroxyethyl cellulose-g-poly (butyl- acrylate-co-vinyl acetate) emulsion[J]. Carbohydrate Polymers, 2021, 255: 117467. doi: 10.1016/j.carbpol.2020.117467
    [18]
    刘新才, 董彬彬, 晁单明. 聚苯胺薄膜在电量可视化超级电容器中的应用-推荐一个综合化学实验[J]. 大学化学, 2021, 36(2): 161-167.
    [19]
    PALSANIYA S, NEMADE H B, DASMAHAPATRA A K. Hierarchical PANI-RGO-ZnO ternary nanocomposites for symmetric tandem supercapacitor[J]. Journal of Physics and Chemistry of Solids, 2021, 154: 110081. doi: 10.1016/j.jpcs.2021.110081
    [20]
    汪建德, 彭同江, 鲜海洋, 等. 三维还原氧化石墨烯/聚苯胺复合材料的制备及其超级电容性能[J]. 物理化学学报, 2015, 31(1): 90-98. https://www.cnki.com.cn/Article/CJFDTOTAL-WLHX201501015.htm
    [21]
    INAMDAR A I, CHAVAN H S, KIM H, et al. Mesoporous Ni-PANI composite electrode for electrochromic energy storage applications[J]. Solar Energy Materials and Solar Cells, 2019, 201(c): 110121.
    [22]
    QUOC BAO L, NGUYEN T H, FEI H J, et al. Electrochemical performance of composites made of rGO with Zn-MOF and PANI as electrodes for supercapacitors[J]. Electrochimica Acta, 2021, 367: 137563. doi: 10.1016/j.electacta.2020.137563
    [23]
    GONG Q H, LI Y J, HUANG H, et al. Shape-controlled synthesis of Ni-CeO2@PANI nanocomposites and their synergetic effects on supercapacitors[J]. Chemical Engineering Journal, 2018, 344: 290-298. doi: 10.1016/j.cej.2018.03.079
    [24]
    ISAENKO L I, KORZHNEVA K E, KHYZHUN O Y, et al. Structural and X-ray spectroscopy studies of PbL1-x Bax(NO3)2 solid solutions[J]. Journal of Solid State Chemistry, 2019, 277(c): 786-792.
    [25]
    GAO H W, WU F S, WANG X H, et al. Preparation of NiMoO4-PANI core-shell nanocomposite for the high-performance all-solid-state asymmetric supercapacitor[J]. International Journal of Hydrogen Energy, 2018, 43(39): 18349-18362. doi: 10.1016/j.ijhydene.2018.08.018
    [26]
    黄庆研, 梁雅莉, 王俊荣, 等. 烧成温度对溶胶凝胶法合成LiNi0.8Co0.1Mn0.1O2材料性能的影响[J]. 有色金属科学与工程, 2020, 11(6): 64-70. doi: 10.13264/j.cnki.ysjskx.2020.06.009
    [27]
    杨金猛, 程波明, 钟盛文. La3+掺杂对LiNi0.8Co0.15Al0.05O2结构和电化学性能的影响[J]. 有色金属科学与工程, 2020, 11(4): 106-112. doi: 10.13264/j.cnki.ysjskx.2020.04.016
    [28]
    文敏, 徐子其, 张克, 等. 氧化钨/碳纳米管膜复合负极的制备及其储锂性能[J]. 有色金属科学与工程, 2021, 12(4): 58-65. doi: 10.13264/j.cnki.ysjskx.2021.04.008
  • Related Articles

    [1]MIN Dingwei, CHEN Gong, WEN Tanggen, SHI Zhongning, HUANG Yipeng, YANG Shaohua. Electrochemical mechanism of copper electrodeposition in NaCl-KCl-MgCl2-Cu2S melts[J]. Nonferrous Metals Science and Engineering, 2023, 14(2): 182-188. DOI: 10.13264/j.cnki.ysjskx.2023.02.004
    [2]LI Yunlong, HAN Shichao, JIAO Yulong, XIAO Qi, CAI Tongtong, ZHANG Xuehui. Study on the preparation and microstructure properties of Ni-SiO2 composite coatings by electrodeposition[J]. Nonferrous Metals Science and Engineering, 2022, 13(2): 31-37. DOI: 10.13264/j.cnki.ysjskx.2022.02.005
    [3]LIU Zhijun, PENG Wanwan, LI Zhifeng, WANG Chunxiang, ZHANG Qian, ZHONG Shengwen. Effect of niobium doping on the electrochemical performance of nickel-based cathode materials[J]. Nonferrous Metals Science and Engineering, 2020, 11(2): 89-96. DOI: 10.13264/j.cnki.ysjskx.2020.02.013
    [4]XU Yangming, CUI Qiang, WANG Yaqin, SHI Kexin, TONG jinlin, WANG Bin. Composition optimization and electrochemical properties of Mg-Al-Pb-Ga-Y alloys as anodes for seawater activated battery[J]. Nonferrous Metals Science and Engineering, 2019, 10(4): 51-58. DOI: 10.13264/j.cnki.ysjskx.2019.04.009
    [5]HU Wei, ZHONG Shengwen, LI Xiaoyan, HUANG Jingbiao, PENG Kangchun, RAO Xianfa, QIU Shitao. The study of synthetize and electrochemical properties in LiNi0.55Co0.15Mn0.30O2 cathode material[J]. Nonferrous Metals Science and Engineering, 2019, 10(3): 54-57. DOI: 10.13264/j.cnki.ysjskx.2019.03.009
    [6]DONG Liang, GUO Feng, WANG Mingyong. Surface morphology and mechanical properties of Ni foils electrodeposited under super gravity[J]. Nonferrous Metals Science and Engineering, 2019, 10(3): 26-33. DOI: 10.13264/j.cnki.ysjskx.2019.03.005
    [7]QIU Shitao, ZHONG Shengwen, LI Tingting, YANG Jinmeng, TIAN Feng. Study on the electrochemical performance of Cu-added LiNi0.6Co0.2Mn0.2O2[J]. Nonferrous Metals Science and Engineering, 2018, 9(5): 21-25. DOI: 10.13264/j.cnki.ysjskx.2018.05.004
    [8]HU Wei, ZHONG Shengwen, HUANG Bing. Optimizing electrochemical properties in Li-rich Mn-based cathode material[J]. Nonferrous Metals Science and Engineering, 2014, 5(4): 32-36. DOI: 10.13264/j.cnki.ysjskx.2014.04.007
    [9]WANG Ri-chu, WANG Nai-guang, PENG Chao-qun, ZENG Su-ming. Effect of manganese on electrochemical performance of magnesium alloy anode AP65 used in seawater activated battery[J]. Nonferrous Metals Science and Engineering, 2013, 4(3): 1-8, 48. DOI: 10.13264/j.cnki.ysjskx.2013.03.009
    [10]ZHANG Sheng-wen, WANG Yu′e, ZHANG Qian, QIAO Xiao-ni. Synthesis and Electrochemical Properties of LiNi0.5Mn0.5O2 as Cathode Material for AA Lithium Ion Batteries[J]. Nonferrous Metals Science and Engineering, 2010, 1(02): 11-15. DOI: 10.13264/j.cnki.ysjskx.2010.06.016
  • Cited by

    Periodical cited type(1)

    1. 王鹏,张军战,张颖,覃枫,杨明辉,陈红侠. 催化剂对硅氧碳多孔陶瓷结构与性能的影响. 稀有金属. 2022(12): 1573-1579 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (219) PDF downloads (19) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return