Citation: | ZOU Chengjun, HONG Jiabin, WU Yonglin, WANG Chunxiang, LI Zhifeng. Electrodeposition synthesis of Ni/Ni(OH)2/PANI composites film and electrochemical properties[J]. Nonferrous Metals Science and Engineering, 2023, 14(2): 202-209. DOI: 10.13264/j.cnki.ysjskx.2023.02.006 |
[1] |
XIONG X H, DING D, CHEN D C, et al. Three-dimensional ultrathin Ni(OH)2 nanosheets grown on nickel foam for high-performance supercapacitors[J]. Nano Energy, 2015, 11: 154-161. doi: 10.1016/j.nanoen.2014.10.029
|
[2] |
ZHANG Z G, HUO H, WANG L G, et al. Stacking fault disorder induced by Mn doping in Ni(OH)2 for supercapacitor electrodes[J]. Chemical Engineering Journal, 2021, 412: 128617. doi: 10.1016/j.cej.2021.128617
|
[3] |
LI X Y, CHEN R R, ZHAO Y H, et al. Layer-by-layer inkjet printing GO film anchored Ni(OH)2 nanoflakes for high-performance supercapacitors[J]. Chemical Engineering Journal, 2019, 375: 121988. doi: 10.1016/j.cej.2019.121988
|
[4] |
HUANG Y, BUFFA A, DENG H Q, et al. Ultrafine Ni(OH)2 nanoplatelets grown on 3D graphene hydrogel fabricated by electrochemical exfoliation for high-performance battery-type asymmetric supercapacitor applications[J]. Journal of Power Sources, 2019, 439: 227046. doi: 10.1016/j.jpowsour.2019.227046
|
[5] |
AHMAD MOZAFFARI S, MAHMOUDI NAJAFI S H, NOROUZI Z. Hierarchical NiO@Ni(OH)2 nanoarrays as high-performance supercapacitor electrode material[J]. Electrochimica Acta, 2021, 368: 137633. doi: 10.1016/j.electacta.2020.137633
|
[6] |
强云玥, 钱炜, 王震, 等. 基于不同质量比的石墨烯与氢氧化镍电极材料性能分析[J]. 电子器件, 2019, 42(2): 276-280. doi: 10.3969/j.issn.1005-9490.2019.02.002
|
[7] |
LIANG W J, WANG S L, ZHANG Y X, et al. β-Ni(OH)2 nanosheets coating on 3D flower-like α-Ni(OH)2 as high-performance electrodes for asymmetric supercapacitor and Ni/MH battery[J]. Journal of Alloys and Compounds, 2020, 849: 156616. doi: 10.1016/j.jallcom.2020.156616
|
[8] |
WANG H L, CASALONGUE H S, LIANG Y Y, et al. Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials[J]. Journal of the American Chemical Society, 2010, 132(21): 7472-7477. doi: 10.1021/ja102267j
|
[9] |
ZHANG L, LI G H, JING L L, et al. Controllable and fast growth of ultrathin α-Ni(OH)2 nanosheets on polydopamine based N-doped carbon spheres for supercapacitors application[J]. Synthetic Metals, 2020, 270: 116580. doi: 10.1016/j.synthmet.2020.116580
|
[10] |
ZHAO C H, HAN S F, DING Y Z, et al. One-step synthesis of amino acid-derived HTC/NiO/Ni(OH)2@Ni cathode for high performance supercapacitors[J]. Applied Surface Science, 2021, 558: 149853. doi: 10.1016/j.apsusc.2021.149853
|
[11] |
徐艳辉, 张倩, 王晓琳. 氢氧化镍电极材料研究进展[J]. 电池工业, 2009, 14(6): 416-420. doi: 10.3969/j.issn.1008-7923.2009.06.013
|
[12] |
MADHUMITA B, KUMAR R, IVIWE A, et al. High-performance supercapacitors based on S-doped polyaniline nanotubes decorated with Ni(OH)2 nanosponge and onion-like carbons derived from used car tyres[J]. Electrochimica Acta, 2020, 342: 136111. doi: 10.1016/j.electacta.2020.136111
|
[13] |
ZHANG J L, SHI L, LIU H D, et al. Utilizing polyaniline to dominate the crystal phase of Ni(OH)2 and its effect on the electrochemical property of polyaniline/Ni(OH)2 composite[J]. Journal of Alloys and Compounds, 2015, 651: 126-134. doi: 10.1016/j.jallcom.2015.08.090
|
[14] |
HUO Y Q, LI C H. Capacitive properties of Polyaniline/Nickel hydroxide composites prepared by using 4-amino thiophenol as the structure directing agent[J]. Applied Mechanics and Materials, 2014, 490/491: 3-7. doi: 10.4028/www.scientific.net/AMM.490-491.3
|
[15] |
VISWANATHAN A, SHETTY A N. The high energy supercapacitor from rGO/Ni(OH)2/PANI nanocomposite with methane sulfonic acid as dopant[J]. Journal of Colloid and Interface Science, 2019, 557: 367-380. doi: 10.1016/j.jcis.2019.09.036
|
[16] |
SHANGGUAN E B, LI J, GUO D, et al. A comparative study of structural and electrochemical properties of high-density aluminum substituted α-nickel hydroxide containing different interlayer anions[J]. Journal of Power Sources, 2015, 282: 158-168. doi: 10.1016/j.jpowsour.2015.02.059
|
[17] |
LIU X M, ZENG W, ZHAO J J, et al. Preparation and anti-leakage properties of hydroxyethyl cellulose-g-poly (butyl- acrylate-co-vinyl acetate) emulsion[J]. Carbohydrate Polymers, 2021, 255: 117467. doi: 10.1016/j.carbpol.2020.117467
|
[18] |
刘新才, 董彬彬, 晁单明. 聚苯胺薄膜在电量可视化超级电容器中的应用-推荐一个综合化学实验[J]. 大学化学, 2021, 36(2): 161-167.
|
[19] |
PALSANIYA S, NEMADE H B, DASMAHAPATRA A K. Hierarchical PANI-RGO-ZnO ternary nanocomposites for symmetric tandem supercapacitor[J]. Journal of Physics and Chemistry of Solids, 2021, 154: 110081. doi: 10.1016/j.jpcs.2021.110081
|
[20] |
汪建德, 彭同江, 鲜海洋, 等. 三维还原氧化石墨烯/聚苯胺复合材料的制备及其超级电容性能[J]. 物理化学学报, 2015, 31(1): 90-98. https://www.cnki.com.cn/Article/CJFDTOTAL-WLHX201501015.htm
|
[21] |
INAMDAR A I, CHAVAN H S, KIM H, et al. Mesoporous Ni-PANI composite electrode for electrochromic energy storage applications[J]. Solar Energy Materials and Solar Cells, 2019, 201(c): 110121.
|
[22] |
QUOC BAO L, NGUYEN T H, FEI H J, et al. Electrochemical performance of composites made of rGO with Zn-MOF and PANI as electrodes for supercapacitors[J]. Electrochimica Acta, 2021, 367: 137563. doi: 10.1016/j.electacta.2020.137563
|
[23] |
GONG Q H, LI Y J, HUANG H, et al. Shape-controlled synthesis of Ni-CeO2@PANI nanocomposites and their synergetic effects on supercapacitors[J]. Chemical Engineering Journal, 2018, 344: 290-298. doi: 10.1016/j.cej.2018.03.079
|
[24] |
ISAENKO L I, KORZHNEVA K E, KHYZHUN O Y, et al. Structural and X-ray spectroscopy studies of PbL1-x Bax(NO3)2 solid solutions[J]. Journal of Solid State Chemistry, 2019, 277(c): 786-792.
|
[25] |
GAO H W, WU F S, WANG X H, et al. Preparation of NiMoO4-PANI core-shell nanocomposite for the high-performance all-solid-state asymmetric supercapacitor[J]. International Journal of Hydrogen Energy, 2018, 43(39): 18349-18362. doi: 10.1016/j.ijhydene.2018.08.018
|
[26] |
黄庆研, 梁雅莉, 王俊荣, 等. 烧成温度对溶胶凝胶法合成LiNi0.8Co0.1Mn0.1O2材料性能的影响[J]. 有色金属科学与工程, 2020, 11(6): 64-70. doi: 10.13264/j.cnki.ysjskx.2020.06.009
|
[27] |
杨金猛, 程波明, 钟盛文. La3+掺杂对LiNi0.8Co0.15Al0.05O2结构和电化学性能的影响[J]. 有色金属科学与工程, 2020, 11(4): 106-112. doi: 10.13264/j.cnki.ysjskx.2020.04.016
|
[28] |
文敏, 徐子其, 张克, 等. 氧化钨/碳纳米管膜复合负极的制备及其储锂性能[J]. 有色金属科学与工程, 2021, 12(4): 58-65. doi: 10.13264/j.cnki.ysjskx.2021.04.008
|
[1] | Li Xueshuai, Guo Lili, Zhang Jianbo, Wang Haibin, Zheng Dianshui. Anisotropy and texture correlation analysis of deep-drawing copper strip[J]. Nonferrous Metals Science and Engineering, 2020, 11(4): 44-48. DOI: 10.13264/j.cnki.ysjskx.2020.04.007 |
[2] | Zhang Ying, Zhang Ting-an. Research progress for vanadium extraction from vanadium leach solution by solvent extraction[J]. Nonferrous Metals Science and Engineering, 2017, 8(5): 14-20. DOI: 10.13264/j.cnki.ysjskx.2017.05.002 |
[3] | WANG Fang, Zhao Hongxing, XIAO Yanfei, XU Zhifeng. Solvent extraction of thioarsenite by CO32--type tOMAC in alkaline solutions[J]. Nonferrous Metals Science and Engineering, 2016, 7(2): 14-18. |
[4] | YANG Ming, WU Di, YE Xinyu, JIAO Yunfen, WU Long, HUANG Xin, LI Qin. Preparation of large particle neodymium oxide by oxalic acid precipitation with stripping solution[J]. Nonferrous Metals Science and Engineering, 2015, 6(1): 106-110. DOI: 10.13264/j.cnki.ysjskx.2015.01.020 |
[5] | LI Bo. Research advances of molybdenum solvent extraction in acidic system[J]. Nonferrous Metals Science and Engineering, 2013, 4(6): 33-36. DOI: 10.13264/j.cnki.ysjskx.2013.06.021 |
[6] | FAN Jin-jun, DENG Sheng-hua, XIE Fang-hao, YANG You-ming. Experiment on Back-extraction of Cr(Ⅲ) in Acidic Extractant by Alkali[J]. Nonferrous Metals Science and Engineering, 2011, 2(4): 97-100. |
[7] | ZHAO Hong-jin, ZHANG Ying-hui, WANG Da, YANG Bin, XU Gao-lei. Production Process of Cu/Al Cladding Strip Used for Cable[J]. Nonferrous Metals Science and Engineering, 2010, 1(01): 15-17, 23. |
[8] | ZHANG Chun-lei, LIU Xue-jun. Application of Global Positioning System in Strip Mine[J]. Nonferrous Metals Science and Engineering, 2008, 22(4): 1-3. |
[9] | DAI Jiang-hong, ZENG Qing-yun, CHEN Qing-gen. Study on Technique of Microwave Extraction for Producing Copper Sulfate from Leaching Solution of Low Grade Copper Ores[J]. Nonferrous Metals Science and Engineering, 2006, 20(2): 23-25. |