Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
YANG Ming, WU Di, YE Xinyu, JIAO Yunfen, WU Long, HUANG Xin, LI Qin. Preparation of large particle neodymium oxide by oxalic acid precipitation with stripping solution[J]. Nonferrous Metals Science and Engineering, 2015, 6(1): 106-110. DOI: 10.13264/j.cnki.ysjskx.2015.01.020
Citation: YANG Ming, WU Di, YE Xinyu, JIAO Yunfen, WU Long, HUANG Xin, LI Qin. Preparation of large particle neodymium oxide by oxalic acid precipitation with stripping solution[J]. Nonferrous Metals Science and Engineering, 2015, 6(1): 106-110. DOI: 10.13264/j.cnki.ysjskx.2015.01.020

Preparation of large particle neodymium oxide by oxalic acid precipitation with stripping solution

More Information
  • Received Date: September 01, 2014
  • Published Date: February 27, 2015
  • The large particle neodymium oxide is prepared with oxalic acid as precipitator, and stripping solution by P507-N235-kerosene-cyclohexane system as mother solution. The particle size, morphology, phase composition and thermal stability of samples are characterized by laser particle size analyzers, including SEM, XRD and TG-DTG. The main parameters affecting the particle size of precursor in precipitation are reaction temperature, stirring velocity, feeding speed and aging time. The optimum parameters are as follows: reaction temperature, 50 ℃; stirring velocity, 300 r/min; feeding speed, 9 mL/min; aging time, 24 h. A comparative experiment indicates that the residual organic phase in stripping solution can effectively increase the particle size of precursor. Comparative experiments show that the residual organic phase stripping solution of neodymium oxide effectively increases the particle size of precursor. The precursor decomposes completely to neodymium oxide calcined at 800 ℃ for 2 h. The median particle size of final neodymium oxide is larger than 50 μm.
  • [1]
    Platova R A, Kondrukevich A A, Platov Y T. Application of neodymium oxide to increase the whiteness of porcelain[J]. Glass and Ceramics, 2012, 68(11): 393-398. https://www.researchgate.net/publication/257565796_Application_of_neodymium_oxide_to_increase_the_whiteness_of_porcelain
    [2]
    Bernhard M E Russbueldt, Wolfgang F Hoelderich. New rare earth oxide catalysts for the transesterification of triglycerides with methanol resulting in biodiesel and pure glycerol[J]. Journal of Catalysis, 2010, 271(2): 290-304. doi: 10.1016/j.jcat.2010.02.005
    [3]
    Ye X Y, Gao W G, Xia L B, et al. A modified solution combustion method to superfine Gd2O3:Eu3+ phosphor: preparation, phase transformation and optical properties[J].Journal of Rare Earths, 2010, 28(3): 345-350. doi: 10.1016/S1002-0721(09)60109-5
    [4]
    吴龙, 吴迪, 叶信宇, 等.稀土氧化物复合ZrO2陶瓷的制备及应用研究进展[J].有色金属科学与工程, 2012, 3(4): 37-42. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201204006
    [5]
    Ma Y, Wang B R, Li L N, et al. Study on the preparation process of large particle cerium oxide[J]. Journal of Rare Earths, 2010, 28: 136-138. doi: 10.1016/S1002-0721(10)60299-2
    [6]
    高玮, 古宏晨.稀土草酸盐沉淀过程中颗粒大小的控制[J].稀土, 2000, 21(1): 11-13. http://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ200001004.htm
    [7]
    Jayaramaiah J R, Lakshminarasappa B N, Nagabhushana B M. Luminescence studies of europium doped yttrium oxide nano phosphor[J]. Sensors & Actuators:B.Chemical, 2012, 173: 234-238. https://www.researchgate.net/publication/257354353_Luminescence_studies_of_europium_doped_yttrium_oxide_nano_phosphor
    [8]
    Hee Jo Song, Jun Hong Noh, Hee-Suk Roh, et al. Preparation and characterization of nano-sized Y3 Al5O12: Ce3+ phosphor by high-energy milling process[J]. Current Applied Physics, 2013(13): 69-74.
    [9]
    Park Woo-Jung, Jung Mong-Kwon, Moon Ji-Wook, et al. Enhanced luminescent of Y (P, V) O4: Eu3+ nano phosphors in porous cellulose fibers by facile liquid phase precursor synthesis[J]. Journal of Nanoscience and Nanotechnology, 2009, 9(7): 4371-4375. doi: 10.1166/jnn.2009.M62
    [10]
    王嵩龄, 刘钧云, 贾江涛, 等.大粒度、高表观比重氧化铈的合成[J].中国稀土学报, 2008, 26(1): 117-120. http://www.cnki.com.cn/Article/CJFDTOTAL-XTXB200801025.htm
    [11]
    Liu Z G, Li M, Hu Y H, et al. Preparation of large particle rare earth oxides by precipitation with oxalic acid[J]. Journal of Rare Earths, 2008, 26(2): 158-162. doi: 10.1016/S1002-0721(08)60057-5
    [12]
    马莹, 李莉娜, 王宝荣, 等.草酸沉淀法制备大颗粒氧化钇工艺研究[J].稀有金属, 2010, 34(6): 950-954. http://www.cnki.com.cn/Article/CJFDTOTAL-ZXJS201006029.htm
    [13]
    杨幼明, 蓝桥发, 邓声华, 等. P507与N235混合溶剂的稳定性及对NdCl3的协萃效应[J].中国稀土学报, 2013, 31(4): 385-392. http://www.cnki.com.cn/Article/CJFDTOTAL-XTXB201304002.htm
    [14]
    叶信宇, 吴龙, 杨明, 等. P507-N235双溶剂萃取体系反萃工艺研究[J].中国稀土学报, 2013, 31(6): 695-702. http://www.cnki.com.cn/Article/CJFDTOTAL-XTXB201306009.htm
    [15]
    胡皆汗, 郑学仿.实用光谱学[M].北京:科学出版社, 2010.
    [16]
    胡晓丽, 陈东丹, 胡晓洪, 等.表面活性剂对TiO2粉体粒度和形貌的影响[J].中国陶瓷工业, 2003, 4(10): 25-28. http://www.cnki.com.cn/Article/CJFDTOTAL-ZTCG200304006.htm
  • Related Articles

    [1]WANG Lu, FENG Tianyi, CUI Pengyuan, SHEN Qingfeng, LIN Yan, YU Xiaohua. Status of technological research on the separation and recovery of valuable metal ions in cathode materials from spent lithium-ion battery[J]. Nonferrous Metals Science and Engineering, 2023, 14(6): 791-801. DOI: 10.13264/j.cnki.ysjskx.2023.06.006
    [2]HUANG Jinchao, GUO Ziting, XIAO Qingmei, ZHONG Shengwen. Effect of binary composite conductive agent with graphene and carbon nanotube on performance of LiNi0.5Co0.2Mn0.3O2 lithium-ion battery[J]. Nonferrous Metals Science and Engineering, 2023, 14(3): 355-362. DOI: 10.13264/j.cnki.ysjskx.2023.03.008
    [3]ZHANG Ke, LIU Dongxue, WEN Min, YIN Yanhong. Modification of tungsten oxide as an anode electrode for lithium-ion batteries[J]. Nonferrous Metals Science and Engineering, 2022, 13(6): 74-83. DOI: 10.13264/j.cnki.ysjskx.2022.06.010
    [4]LI Rui, CHEN Yu, DING Nengwen, LI Zhifeng, LI Xiaocheng. Preparation and electrochemical performance of Lithium-ion battery negative electrode material PSi@GO[J]. Nonferrous Metals Science and Engineering, 2022, 13(5): 16-22. DOI: 10.13264/j.cnki.ysjskx.2022.05.003
    [5]ZHONG Caini, CHEN Zheqin, LU Yanhua, LIU Jiaming, XIA Shubiao. A study on the synthesis and electrochemical properties of CuFe2O4 cubes as anode material for lithium-ion batteries[J]. Nonferrous Metals Science and Engineering, 2020, 11(3): 59-64. DOI: 10.13264/j.cnki.ysjskx.2020.03.008
    [6]ZHAO Tianyu, SONG Yunfeng, LI Yongli, ZHAO Zhongwei, HE Lihua, CHEN Xingyu, LIU Xuheng. Recovery of lithium from leaching solution of anode materials in waste lithium-ion batteries by solvent extraction method[J]. Nonferrous Metals Science and Engineering, 2019, 10(1): 49-53. DOI: 10.13264/j.cnki.ysjskx.2019.01.008
    [7]PENG Wanwan, XU Chang, LI Zhifeng, FAN Fengsong, ZHANG Qian, WANG Chunxiang, ZHONG Shengwen. Effects of surface density and compaction density on properties of fast charge lithium ion battery[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 69-73. DOI: 10.13264/j.cnki.ysjskx.2017.03.011
    [8]LI Jin-hui, ZHENG Shun, XIONG Dao-ling, LI Ying, TANG Cong-lin, YANG Jin-xin. Methods for valuable resource recovery from cathode materials of spent lithium ion battery[J]. Nonferrous Metals Science and Engineering, 2013, 4(4): 29-35. DOI: 10.13264/j.cnki.ysjskx.2013.04.005
    [9]LIAO Chun-fa, CHEN Hui-huang, CHEN Zi-ping. Influence of Doping Rare Earth on the LiCoO2 as Lithium-ion Positive Material[J]. Nonferrous Metals Science and Engineering, 2004, 18(2): 33-37.
    [10]LIAO Chun-fa, GUO Shou-yu, CHEN Hui-huang. Research Status on Cathode Materials of Li-ion Battery[J]. Nonferrous Metals Science and Engineering, 2003, 17(2): 34-37.
  • Cited by

    Periodical cited type(11)

    1. 郑娅,刘娟,喻强,穆艺臣,赵小玉,李小成. CO_2氧化多孔Mg_2Si制备微纳分级Si/C材料及储锂性能. 有色金属科学与工程. 2024(02): 256-264+273 . 本站查看
    2. 李虎振,甄蒙蒙,胡振中. 超薄壁TiO_2(B)纳米管制备及其储锂性能研究. 河北工业大学学报. 2024(03): 58-64 .
    3. 云红红,解寅珑,白韡,白健美,张轩. 电力系统储能中的多孔碳电池材料及应用实验研究. 化学工程师. 2023(09): 94-99 .
    4. 李芮,陈煜,丁能文,李之锋,李小成. 锂离子电池负极材料PSi@GO的制备及其电化学性能. 有色金属科学与工程. 2022(05): 16-22 . 本站查看
    5. 刘晓娴,郑娅,刘娟,喻强,李小成,韩峰,王剑秋. 部分炭化策略制备Si@C材料及其储锂性能研究. 有色金属科学与工程. 2022(06): 50-57 . 本站查看
    6. 张克,刘冬雪,文敏,尹艳红. 锂离子电池用氧化钨负极材料的改性. 有色金属科学与工程. 2022(06): 74-83 . 本站查看
    7. 汪若冰. 基于双模板法钠离子电池三维碳基负极复合材料的制备和性能. 廊坊师范学院学报(自然科学版). 2021(02): 35-38 .
    8. 籍向东,王勇,詹欢,潘春艳,岳国仁,曹成. 载硫酸高铈凹凸棒石的制备及其性能研究. 当代化工. 2021(06): 1280-1283 .
    9. 文敏,徐子其,张克,李轩,胡君辉,罗虹,尹艳红. 氧化钨/碳纳米管膜复合负极的制备及其储锂性能. 有色金属科学与工程. 2021(04): 58-65 . 本站查看
    10. 尚志同,戴儇,刘彬,喻强,李小成. 多孔硅@石墨烯-碳纳米管的制备及性能研究. 电源技术. 2021(12): 1533-1536+1557 .
    11. 张学硕,屈银虎,左文婧,高浩斐,王钰凡,张红. 3D打印锂离子电池硅负极的改性及制备. 西安工程大学学报. 2020(06): 52-58 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (46) PDF downloads (14) Cited by(14)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return