Citation: | LI Xiaohan, HE Jianing, SU Ruiming, YANG Yuping, NIE Sainan, TAN Bing. Effect on stress corrosion cracking of alloy 7075 with two-step aging[J]. Nonferrous Metals Science and Engineering, 2022, 13(3): 69-75. DOI: 10.13264/j.cnki.ysjskx.2022.03.010 |
[1] |
杨少华, 刘增威, 林明, 等. 7075铝合金在不同pH值NaCl溶液中的腐蚀行为[J]. 有色金属科学与工程, 2017, 8(4): 7-11. doi: 10.13264/j.cnki.ysjskx.2017.04.002
|
[2] |
GEORGE S L, KNUTSEN R D. Composition segregation in semi-solid metal cast AA7075 aluminium alloy[J]. Journal of Materials Science, 2012, 47(11): 4716-4725. doi: 10.1007/s10853-012-6340-3
|
[3] |
黄晶明, 王昭文, 刘增威, 等. 采用SECM分析7075铝合金的局部腐蚀行为[J]. 有色金属科学与工程, 2019, 10(3): 14-20. doi: 10.13264/j.cnki.ysjskx.2019.03.003
|
[4] |
MAHATHANINWONG N, PLOOKPHOL T, WANNASIN J, et al. T6 heat treatment of rheocasting 7075 Al alloy[J]. Materials Science and Engineering: A, 2012, 532: 91-99. doi: 10.1016/j.msea.2011.10.068
|
[5] |
SHINN D W, WEI Y CHEN G B, et al. The corrosion protection study on inner surface from welding of aluminum alloy 7075-T6 hydrogen storage bottle[J]. International Journal of Hydrogen Energy, 2015, 41(1): 570-596.
|
[6] |
KNIGHT S P, BIRBILIS N, MUDDLE B C, et al. Correlations between intergranular stress corrosion cracking, grain-boundary microchemistry, and grain-boundary electrochemistry for Al-Zn-Mg-Cu alloys[J]. Corrosion Science, 2010, 52(12): 4073-4080. doi: 10.1016/j.corsci.2010.08.024
|
[7] |
丁清伟, 张迪, 刘浩然, 等. Al-xMg-3.1Zn铝合金的应力腐蚀开裂行为及其机制[J]. 稀有金属材料与工程, 2020, 49(5): 1601-1606. https://www.cnki.com.cn/Article/CJFDTOTAL-COSE202005019.htm
|
[8] |
郝雪龙, 孙泽明, 刘建华. 取向对含钪2124铝合金抗应力腐蚀开裂行为的影响[J]. 中国有色金属学报, 2013, 23(12): 3294-3301. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201312005.htm
|
[9] |
李荣德, 苏睿明, 曲迎东. 喷射成形7075合金回归再时效处理的组织和抗应力腐蚀性能[J]. 机械工程学报, 2013, 49(20): 22-29. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201320005.htm
|
[10] |
MARLAUD T, DESCHAMPS A, BLEY F, et al. Influence of alloy composition and heat treatment on precipitate composition in Al-Zn-Mg-Cu alloys[J]. Acta Materialia, 2010, 58(1): 248-260. doi: 10.1016/j.actamat.2009.09.003
|
[11] |
韦士龙, 冯艳, 王日初, 等. 热处理对7056和7095铝合金力学性能和SCC的影响[J]. 中国有色金属学报, 2020, 30(8): 1739-1749. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ202008001.htm
|
[12] |
SILVA G, RIVOLTA B, GEROSA R, et al. Study of the SCC behavior of 7075 aluminum alloy after one-step aging at 163℃[J]. Journal of Materials Engineering and Performance, 2013, 22(1): 210-214. doi: 10.1007/s11665-012-0221-4
|
[13] |
HAMIDREZA F, BABAK H, MOUSA Y. The effect of the surface treating and high-temperature aging on the strength and SCC susceptibility of 7075 aluminum alloy[J]. Journal of Materials Engineering and Performance, 2010, 19(6): 852-859. doi: 10.1007/s11665-009-9562-z
|
[14] |
SCHNATTERER C, ZANDER D. Influence of heat treatments on the stress corrosion cracking susceptibility of 7075 aluminum wires in NaCl solutions[J]. Materials and Corrosion, 2016, 67(11): 1164-1172. doi: 10.1002/maco.201608978
|
[15] |
ENUNG N, SUNARA P. Improvement of stress corrosion resistance in aluminum alloy 7075 through retrogression and re-aging modification[J]. Advanced Materials Research, 2013, 789: 467-475. doi: 10.4028/www.scientific.net/AMR.789.467
|
[16] |
BAYDOGAN M, CIMENOGLU H, KAYALI E S, et al. Improved resistance to stress corrosion cracking failures via optimized retrogression and reaging of 7075-T6 aluminum sheets[J]. Metallurgical and Materials Transactions A, 2008, 39(10): 2470-2476. doi: 10.1007/s11661-008-9595-1
|
[17] |
REDA Y, ABDEL K R, ELMAHALLAWI I. Improvements in mechanical and stress corrosion cracking properties in Al-alloy 7075 via retrogression and reaging[J]. Materials Science and Engineering A, 2008, 485(1/2): 468-475.
|
[18] |
LI Z, XIONG B, ZHANG Y, et al. Investigation of microstructural evolution and mechanical properties during two-step ageing treatment at 115 and 160℃ in an Al-Zn-Mg-Cu Alloy pre-stretched thick plate[J]. Materials Characterization, 2008, 59(3): 279-282.
|
[19] |
LIN L H, LIU Z Y, YING P Y, et al. Improved stress corrosion cracking resistance and strength of a two-step aged Al-Zn-Mg-Cu alloy using Taguchi method[J]. Journal of Materials Engineering and Performance, 2015, 24(12): 4870-4877. doi: 10.1007/s11665-015-1733-5
|
[20] |
GOSWAMI A, KUMAR J. Optimization in wire-cut EDM of Nimonic-80A using Taguchi's approach and utility concept[J]. Engineering Science and Technology, 2014, 17(4): 236-246.
|
[21] |
COOPER K R, KELLY R G. Crack tip chemistry and electrochemistry of environmental cracks in AA7050[J]. Corrosion Science, 2007, 49(6): 2636-2662. doi: 10.1016/j.corsci.2006.12.001
|
[22] |
RAO A C U, VASU V, GOVINDARAJU M, et al. Stress corrosion cracking behaviour of 7xxx aluminum alloys: A literature review[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(6): 1447-1471. doi: 10.1016/S1003-6326(16)64220-6
|
[23] |
陈送义, 陈康华, 董朋轩, 等. 双级时效对7085铝合金组织和性能的影响[J]. 中国有色金属学报, 2015, 25(10): 2688-2694. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201510010.htm
|
[24] |
闫焱, 郑子樵, 龙佳. 7A55铝合金预拉伸板材的双级时效工艺[J]. 材料热处理学报, 2010, 31(11): 128-133. https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201011027.htm
|
[1] | ZONG Lin, ZHAO Hongjin, HU Yujun, ZHANG Bing, XU Xingxing. Effect of two-stage aging process on mechanical properties of QAl9-4 aluminum bronze alloy[J]. Nonferrous Metals Science and Engineering, 2024, 15(3): 392-399. DOI: 10.13264/j.cnki.ysjskx.2024.03.009 |
[2] | CHEN Fei, ZHANG Shibin, XIE Yunzhong, WANG Junfeng. Orthogonal test of compound soil curing agents in ionic rare-earth heap leaching sites[J]. Nonferrous Metals Science and Engineering, 2023, 14(6): 887-894. DOI: 10.13264/j.cnki.ysjskx.2023.06.017 |
[3] | XIANG Ziqi, SHEN Huiyuan, HE Yang, SHENG Xiaofei, XIAO Zhu. Research on improving the corrosion resistance of conductive CuSn alloy for socket[J]. Nonferrous Metals Science and Engineering, 2022, 13(1): 76-82. DOI: 10.13264/j.cnki.ysjskx.2022.01.010 |
[4] | HUANG Chengge, TANG Daowen, CAI Pengyuan, XIONG Huakang, HUANG Biao. Orthogonal test on the leaching of a refractory gold ore in Guizhou province by bleaching powder[J]. Nonferrous Metals Science and Engineering, 2020, 11(2): 97-103. DOI: 10.13264/j.cnki.ysjskx.2020.02.014 |
[5] | HUANG Jingming, WANG Zhaowen, LIU Zengwei, TIAN Yabin, YE Changmei, YANG Shaohua. Analysis of local corrosion of 7075 aluminum alloy by SECM[J]. Nonferrous Metals Science and Engineering, 2019, 10(3): 14-20. DOI: 10.13264/j.cnki.ysjskx.2019.03.003 |
[6] | ZHAO Kui, YU Bin, LI Qiseng, ZHU Zhicheng, KUANG Zeliang. Experimental study on in-situ stress measurement from marble using acoustic emission method[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 88-93. DOI: 10.13264/j.cnki.ysjskx.2017.03.015 |
[7] | HU Min, CHEN Min, LUO Yan, LIU Xiaoqiu. Effect of thermal spray coatings of WC-Co on the stress in jaw crusher tooth plate[J]. Nonferrous Metals Science and Engineering, 2016, 7(6): 83-87. DOI: 10.13264/j.cnki.ysjskx.2016.06.0014 |
[8] | HUANG Jiaquan, WANG Yaping, WANG Huatai, PENG Tangjian, WU Xueling, ZHOU H ongbo, ZENG Weimin. Sulphuric acid leaching of Yulong oxide copper ore based on orthogonal design test[J]. Nonferrous Metals Science and Engineering, 2014, 5(5): 123-129. DOI: 10.13264/j.cnki.ysjskx.2014.05.023 |
[9] | HE Fu-ping, LIU Feng, LI Jian-yun, ZHANG Jing-en, WANG Zhi-xiang. The effects of solution process and aging on Al-Mg-Si-Cu alloy's microstructure and properties[J]. Nonferrous Metals Science and Engineering, 2013, 4(1): 44-48. DOI: 10.13264/j.cnki.ysjskx.2013.01.013 |
[10] | LI Zhao-hui, ZHOU Jian-hua. The Leaching Test Indoor of Ore Oxides in Wushan Copper Mine[J]. Nonferrous Metals Science and Engineering, 2004, 18(3): 22-23. |
1. |
吴甜甜,沈智慧,邱跃琴,赵宏龙. 贵州某卡林型金矿的载金矿物特征及金赋存状态. 矿物学报. 2024(01): 73-83 .
![]() | |
2. |
李嘉欣,聂光华,邓强,谭东东,朱志雄. 酸性体系下硫化矿浮选因素的交互影响研究. 有色金属(选矿部分). 2024(04): 113-123 .
![]() | |
3. |
邹涛,唐道文,韩治龙,袁鑫,许才武,杨秀高. 次氯酸钠浸出贵州难浸金矿的电化学研究. 贵金属. 2024(03): 14-20+27 .
![]() | |
4. |
王辉,王剑,王苹,潘玥,王瑞祥,徐志峰. 含砷金(精)矿预处理过程中砷的走向. 有色金属科学与工程. 2023(03): 329-337+354 .
![]() | |
5. |
田长顺,饶运章,苏港,黄涛. 磁黄铁矿对黄铁矿粉尘爆炸特性参数的影响. 有色金属科学与工程. 2023(05): 692-699 .
![]() |