Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
TIAN Changshun, RAO Yunzhang, SU Gang, HUANG Tao. Effects of pyrrhotite on explosion characteristic parameters of pyrite dust[J]. Nonferrous Metals Science and Engineering, 2023, 14(5): 692-699. DOI: 10.13264/j.cnki.ysjskx.2023.05.012
Citation: TIAN Changshun, RAO Yunzhang, SU Gang, HUANG Tao. Effects of pyrrhotite on explosion characteristic parameters of pyrite dust[J]. Nonferrous Metals Science and Engineering, 2023, 14(5): 692-699. DOI: 10.13264/j.cnki.ysjskx.2023.05.012

Effects of pyrrhotite on explosion characteristic parameters of pyrite dust

More Information
  • Received Date: October 13, 2022
  • Revised Date: November 17, 2022
  • Available Online: November 07, 2023
  • To assess the effect of pyrrhotite on pyrite dust explosion, a 20 L sphere vessel and a test device for the minimum ignition temperature of dust clouds were employed to investigate the influences of pyrrhotite on the parameters of the maximum explosion pressure (Pmax), the maximum explosion pressure rise rate [(dP/dt)max], the minimum explosive concentration (MEC), and the minimum ignition temperature of primary pyrite (hereinafter referred to as raw ore), pyrite pure minerals collected by the mine. The mechanism of pyrrhotite affecting the chemical reaction of pyrrhotite dust explosion was analyzed based on the results of composition and surface structure of explosive products. The results indicate that pyrrhotite can increase the probability of chemical reaction between oxygen and pyrite particles in the raw ore, and decrease the MITC and MEC of the pyrite dust cloud, thereby increasing the Pmax and explosion temperature of the pyrite dust cloud. Additionally, the explosion products of pyrite and magenetite dust are controlled by the explosion temperature, and the final products are Fe3O4 and SO2. The explosion reaction process is consistent with the shrinking core-diffusion limited volatile explosion model.
  • [1]
    SOUNDARARAJAN R, AMYOTTE P R, PEGG M J. Explosibility hazard of iron sulphide dusts as a function of particle size[J]. Journal of Hazardous Materials, 1996, 51(1/2/3):225-239.
    [2]
    田长顺, 饶运章, 许威, 等. 金属硫化矿尘爆炸研究进展[J]. 金属矿山, 2020(4):178-185.
    [3]
    叶红卫, 王志国. 高硫矿床开采的特殊灾害及其发生机理[J]. 有色矿冶, 1995(4):38-42.
    [4]
    许才武, 蒋中刚, 邱洋, 等. 贵州卡林型金矿的微观形貌及赋存状态研究[J]. 有色金属科学与工程, 2022, 13(4): 98-106.
    [5]
    邱廷省, 董浩, 严华山, 等. 某含金银铜硫矿石的低碱铜硫分离与伴生金银综合回收[J]. 有色金属科学与工程, 2021, 12(5): 81-88.
    [6]
    王梦雨, 邱仙辉, 袁勤智, 等. 硫铁矿在废水处理中的研究现状[J]. 有色金属科学与工程, 2020, 11(1): 78-84.
    [7]
    MURPHY R, STRONGIN D R. Surface reactivity of pyrite and related sulfides[J]. Surface Science Reports, 2009, 64(1):1-45.
    [8]
    ZHANG J S, XU P H, SUN L H, et al. Factors influencing and a statistical method for describing dust explosion parameters:A review[J]. Journal of Loss Prevention in the Process Industries, 2018, 56:386-401.
    [9]
    ADDAI E K, GABEL D, KRAUSE U. Experimental investigations of the minimum ignition energy and the minimum ignition temperature of inert and combustible dust cloud mixtures[J]. Journal of Hazardous Materials, 2016, 307:302-311.
    [10]
    LIU A H, CHEN J Y, HUANG X F, et al. Explosion parameters and combustion kinetics of biomass dust[J]. Bioresource Technology, 2019, 294:1-8.
    [11]
    DAI H M, LIANG G Q, YIN H P, et al. Experimental investigation on the inhibition of coal dust explosion by the composite inhibitor of carbamide and zeolite[J]. Fuel, 2022, 38:1-9.
    [12]
    吴卫强. 硫化矿石堆与硫化矿尘层氧化自热研究[D]. 赣州:江西理工大学, 2015.
    [13]
    孙翔, 饶运章, 李闯, 等. 硫化矿尘云最低着火温度试验研究[J]. 金属矿山, 2017(6):175-179.
    [14]
    袁博云. 硫化矿尘云爆炸强度与爆炸下限浓度试验研究[D]. 赣州:江西理工大学, 2017.
    [15]
    何琰儒, 朱顺兵, 李明鑫, 等. 煤粉粒径对粉尘爆炸影响试验研究与数值模拟[J]. 中国安全科学学报, 2017, 27(1):53-58.
    [16]
    吴佳梦, 庞子政, 朱顺兵, 等. 粒径对中密度纤维板粉尘爆炸特性影响实验研究[J]. 消防理论研究, 2022, 41(3):296-300.
    [17]
    TASCÓN A. Influence of particle size distribution skewness on dust explosibility[J]. Powder Technology, 2018, 338:438-445.
    [18]
    蔡美芳, 党志. 磁黄铁矿氧化机理及酸性矿山废水防治的研究进展[J]. 环境污染与防治, 2006, 28(1):58-61.
    [19]
    王玉娇, 赵江平. 谷物粉尘爆炸特性试验研究[J]. 中国安全科学学报, 2017, 27(4):77-81.
    [20]
    GUO Y Z, REN K Y, HUANG W X, et al. An alternative explosion criterion of combustible dusts based on combustion duration time: Applications for minimum explosion concentration and limiting oxygen concentration[J]. Powder Technology, 2022, 409:1-13.
    [21]
    丁浩青, 温小萍, 邓浩鑫, 等. 障碍物条件下纳米SiO2粉体抑制瓦斯爆炸特性[J]. 安全与环境学报, 2017, 17(3):958-962.
    [22]
    卫园梦, 王庆慧, 杨晓明, 等. 微米级硅粉粉尘爆炸特性及抑爆试验研究[J]. 消防理论研究, 2019, 38(6):775-779.
    [23]
    LI Q Z, WANG K, ZHENG Y N, et al. Explosion severity of micro-sized aluminum dust and its flame propagation properties in 20 L spherical vessel[J]. Powder Technology, 2016, 301:1299-1308.
    [24]
    REN K Y, GUO Y Z, HUANG W X, et al. Explosion characteristics of coal dusts in O2/N2 ambience: A novel method to determine limiting oxygen concentration[J]. Fuel, 2022, 324:1-11.
    [25]
    SCHWARZ E J, VAUGHAN D J. Magnetic phase relations of pyrrhotite[J]. Journal of Geomagnetism and Geoelectricity, 1972, 24(4):441-458.
    [26]
    马师. 硫化矿尘热分解动力学及其爆温计算研究[D]. 赣州:江西理工大学, 2017.
    [27]
    POWELL A V, VAQUEIRO P, KNIGHT K S, et al. Structure and magnetism in synthetic pyrrhotite Fe7S8:A powder neutron-diffraction study[J]. Physical Review B, 2004, 70(1):1-12.
    [28]
    HANSEN J P, JENSEN L S, WEDEL S, et al. Decomposition and oxidation of pyrite in a fixed-bed reactor[J]. Industrial & Engineering Chemistry Research, 2003, 42(19):4290-4295.
    [29]
    TORO C, TORRES S, PARRA V, et al. On the detection of spectral emissions of iron oxides in combustion experiments of pyrite concentrates[J]. Sensors (Basel, Switzerland), 2020, 20(5):1-15.
    [30]
    HU G L, JOHANSEN K D, WEDEL S, et al. Decomposition and oxidation of pyrite[J]. Progress in Energy and Combustion Science, 2006, 32(3):295-314.
    [31]
    YANG F Q, WU C, CUI Y, et al. Apparent activation energy for spontaneous combustion of sulfide concentrates in storage yard[J]. Transactions Nonferrous Metals Society China, 2011, 21(2):395-401.
    [32]
    田长顺, 饶运章, 许威, 等. 金属硫化矿尘爆炸反应过程机理分析[J]. 有色金属科学与工程, 2020, 11(6):78-84.
    [33]
    王文龙. 钻眼爆破[M]. 北京:煤炭工业出版社, 1984:52-54.
    [34]
    王曙光, 朱建生, 陈栋, 等. 炸药爆炸理论基础[M]. 北京:北京理工大学出版社, 2015:34-41.
    [35]
    华东化工学院. 无机物工学硫酸[M]. 北京:中国工业出版社, 1961:36-74.
    [36]
    卢炳. 中国硫铁矿地质[M]. 北京: 地质出版社, 1984:223-225.
  • Related Articles

    [1]MIN Dingwei, CHEN Gong, WEN Tanggen, SHI Zhongning, HUANG Yipeng, YANG Shaohua. Electrochemical mechanism of copper electrodeposition in NaCl-KCl-MgCl2-Cu2S melts[J]. Nonferrous Metals Science and Engineering, 2023, 14(2): 182-188. DOI: 10.13264/j.cnki.ysjskx.2023.02.004
    [2]SU Gang, RAO Yunzhang, TIAN Changshun, XIANG Cairong, HUANG Tao. Risk assessment of sulfide ore dust cloud explosion based on explosion parameters[J]. Nonferrous Metals Science and Engineering, 2023, 14(1): 118-124. DOI: 10.13264/j.cnki.ysjskx.2023.01.014
    [3]CHEN Jun, ZHANG Wenjuan, MA Baozhong, WANG Chengyan, CHEN Yongqiang. Research progress of mechanical activation in solid phase reaction[J]. Nonferrous Metals Science and Engineering, 2021, 12(1): 13-21. DOI: 10.13264/j.cnki.ysjskx.2021.01.003
    [4]TIAN Changshun, RAO Yunzhang, XU Wei, XIANG Cairong, MA Shi, YUAN Boyun. Mechanism analysis of explosion reaction process of metal sulfide ore dust[J]. Nonferrous Metals Science and Engineering, 2020, 11(6): 78-84. DOI: 10.13264/j.cnki.ysjskx.2020.06.011
    [5]CHEN Huiming, LUO Xiaoyan, XIONG Yang. Vibration characteristics extraction of the ball mill based on multi-parameter fusion[J]. Nonferrous Metals Science and Engineering, 2019, 10(5): 97-100. DOI: 10.13264/j.cnki.ysjskx.2019.05.015
    [6]ZHAO Kui, LIU Weifa, ZENG Peng, ZHANG Liang. Optimization of structural parameters of deep stope based on combination weighting game theory[J]. Nonferrous Metals Science and Engineering, 2018, 9(2): 70-74. DOI: 10.13264/j.cnki.ysjskx.2018.02.012
    [7]ZHAO Kui, YU Bin, LI Qiseng, ZHU Zhicheng, KUANG Zeliang. Experimental study on in-situ stress measurement from marble using acoustic emission method[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 88-93. DOI: 10.13264/j.cnki.ysjskx.2017.03.015
    [8]WU Jianzhong, YANG Wensheng, GUO Hanjie, YU Mengxi, SHI Xiao, DUAN Shengchao. Effect of sulfur content fluctuation on mechanical properties of DH36 ship plate steel[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 22-28, 78. DOI: 10.13264/j.cnki.ysjskx.2017.03.004
    [9]LUO Tao, ZHANG Liang, JIANG Liangliang, FENG Xiao. Testing on the rheological properties of the high-density slurry of the full tailings and its pipeline transportation[J]. Nonferrous Metals Science and Engineering, 2015, 6(4): 86-90. DOI: 10.13264/j.cnki.ysjskx.2015.04.018
    [10]XIONG Li, YE Xue-jun, HU Cheng, LIU Zi-shuai, QIU Zhen-zhong. Sorting effects and mechanism of SA-3 on copper bismuth sulphide[J]. Nonferrous Metals Science and Engineering, 2011, 2(6): 83-85.
  • Cited by

    Periodical cited type(5)

    1. 原伟泉,匡敬忠,胡海祥,梁斌珺,于明明. 离子型稀土浸出过程杂质形成与去除研究进展. 金属矿山. 2024(07): 119-128 .
    2. 李伟鑫,张荣荣,刘勇奇,巩勤学. 用Cyanex272从硫酸盐体系中萃取除铝. 湿法冶金. 2021(02): 159-162 .
    3. 赖安邦,贺强,邱江,许城,肖燕飞. 氧化钙反加料沉淀富集稀土浸出液中稀土的研究. 稀有金属. 2021(07): 866-878 .
    4. 孙亮,李玉虎,宋健清,张敏. 焙烧制度对稀土精矿中铁、铝等杂质浸出行为的影响. 有色金属科学与工程. 2021(04): 27-32+81 . 本站查看
    5. 贺强,赖安邦,邱江,王瑞祥,肖燕飞. 抗坏血酸钠搅洗降低混合稀土氧化物中SO_4~(2-)含量的研究. 中国稀土学报. 2020(04): 497-506 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (81) PDF downloads (6) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return