Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
CHEN Fei, ZHANG Shibin, XIE Yunzhong, WANG Junfeng. Orthogonal test of compound soil curing agents in ionic rare-earth heap leaching sites[J]. Nonferrous Metals Science and Engineering, 2023, 14(6): 887-894. DOI: 10.13264/j.cnki.ysjskx.2023.06.017
Citation: CHEN Fei, ZHANG Shibin, XIE Yunzhong, WANG Junfeng. Orthogonal test of compound soil curing agents in ionic rare-earth heap leaching sites[J]. Nonferrous Metals Science and Engineering, 2023, 14(6): 887-894. DOI: 10.13264/j.cnki.ysjskx.2023.06.017

Orthogonal test of compound soil curing agents in ionic rare-earth heap leaching sites

More Information
  • Received Date: October 16, 2022
  • Revised Date: February 14, 2023
  • Available Online: December 28, 2023
  • To solve the problem of slope soil stability at ion-type rare earth heap leaching sites, the research and development of a new environmentally friendly soil curing agent is of great significance to reduce soil erosion in ion-type rare earth heap leaching sites and stabilize the mine slope. With the orthogonal test method of three factors and three levels, nine groups of composite soil solidifier test schemes with different mass proportions were designed, and the indoor direct shear test was carried out to test the shear strength of the consolidated soil. The range analysis and variance analysis were carried out on such test results. The final results showed that among the composite soil curing agents, Portland cement could best improve the cohesion of solidified soil, compared with waterborne polyurethane and bentonite; bentonite could be superior to Portland cement and waterborne polyurethane in improving internal friction angle of solidified soil. Comprehensive analysis of the results indicates that when the mass ratio of bentonite∶sodium bicarbonate∶ aqueous polyurethane∶ Portland cement∶ water is 10∶ 1∶10∶20∶100, the composite soil curing agent has a good curing effect and economic benefits for the ion-type rare earth heap leaching sites.
  • [1]
    池汝安, 田君. 风化壳淋积型稀土矿评述[J]. 中国稀土学报, 2007(6): 641-650.
    [2]
    郑明贵, 陈艳红. 世界稀土资源供需现状与中国产业政策研究[J]. 有色金属科学与工程, 2012, 3(4): 70-74.
    [3]
    池汝安, 刘雪梅. 风化壳淋积型稀土矿开发的现状及展望[J].中国稀土学报, 2019, 37(2): 129-140.
    [4]
    汤洵忠, 李茂楠, 杨殿. 离子型稀土矿原地浸析采场滑坡及其对策[J]. 金属矿山, 2000(7): 6-8,12.
    [5]
    伍红强, 尹艳芬, 方夕辉. 风化壳淋积型稀土矿开采及分离技术的现状与发展[J]. 有色金属科学与工程, 2010, 1(6): 73-76.
    [6]
    邹国良, 吴一丁, 蔡嗣经. 离子型稀土矿浸取工艺对资源、环境的影响[J]. 有色金属科学与工程, 2014, 5(2): 100-106.
    [7]
    罗才贵, 罗仙平, 苏佳, 等. 离子型稀土矿山环境问题及其治理方法[J].金属矿山,2014(6):91-96.
    [8]
    力乙鹏, 李婷. 土壤固化剂的固化机理与研究进展[J]. 材料导报, 2020, 34(增刊2): 1273-1277, 1298.
    [9]
    董博闻, 王修山, 周恒宇. 应用NS-SL型土壤固化剂固化淤泥的路用性能试验研究[J]. 公路, 2021, 66(8): 13-17.
    [10]
    母冰洁, 王康宏. 3种固化剂对坡地黄土抗冲刷性能的影响[J]. 河南农业大学学报, 2020, 54(6): 1033-1040.
    [11]
    杨国生, 左双英, 杨兴之, 等. 固化红黏土路用复合材料试验研究[J]. 地下空间与工程学报, 2022, 18(1): 218-226.
    [12]
    杨振甲, 何猛, 吴杨, 等. 矿渣-粉煤灰地聚物固化淤泥力学性能和路用性能研究[J]. 硅酸盐通报, 2022, 41(2): 693-703, 724.
    [13]
    吴忠, 刘瑾, 何勇, 等. 高分子固化剂-植被复合改良砂土抗冲刷特性[J]. 水利水电科技进展, 2021, 41(5): 28-33,70.
    [14]
    张克恭, 刘松玉. 土力学[M]. 3版. 北京: 中国建筑工业出版社, 2010.
    [15]
    李广信, 张丙印, 于玉贞. 土力学[M]. 2版. 北京: 清华大学出版社, 2013.
    [16]
    赵伟民. 定南县大塘尾稀土矿山堆浸场地土工测试报告[R].赣州: 江西赣南地质工程院岩土实验室, 2021.
    [17]
    吴一帆, 赵海鹏. 国内水性聚氨酯研究进展[J]. 中外能源,2018, 23(5): 64-72.
    [18]
    刘伟. 地下隧道钢纤维混凝土衬砌抗爆性能研究[D]. 淮南: 安徽理工大学, 2019.
    [19]
    张奇. 复合土壤胶结料在路面基层稳定土中应用的试验研究[D]. 阜新: 辽宁工程技术大学, 2008.
    [20]
    樊恒辉, 高建恩, 吴普特. 土壤固化剂研究现状与展望[J].西北农林科技大学学报(自然科学版), 2006(2): 141-146, 152.
    [21]
    刘红彬, 唐伟奇, 肖凯璐, 等. 水泥基注浆材料的研究进展[J]. 混凝土, 2016(3): 71-75.
    [22]
    胡明玉, 付超, 魏丽丽, 等. 无机土壤固化剂对生土材料的改性及其机理[J]. 材料研究学报, 2017, 31(6): 445-450.
    [23]
    刘世皎, 樊恒辉, 史祥, 等. BCS土壤固化剂固化土的耐久性研究[J]. 西北农林科技大学学报(自然科学版), 2014,42(12): 214-220.
    [24]
    余丽秀, 孙亚光, 赵留喜. 高附加值膨润土深加工及应用研究[J]. 中国矿业, 2010, 19(10): 97-100.
    [25]
    姜桂兰. 膨润土加工与应用[M]. 北京: 化学工业出版社,2005.
    [26]
    CALABRIA-HOLLEY J, PAPATZANI S, NADEN B, et al.Tailored montmorillonite nanoparticles and their behaviour in the alkaline cement environment[J]. Applied Clay Science, 2017, 143: 67-75.
    [27]
    豆海军. 复合水泥基-水玻璃双液注浆材料性能及微观特性研究[D]. 北京: 中国地质大学(北京), 2014.
    [28]
    刘瑾, 张达, 汪勇, 等. 高分子稳定剂生态护坡机理及其应用[J]. 地球科学与环境学报, 2016, 38(3): 420-426.
    [29]
    LIU J,SHI B,JIANG H T, et al. Research on the stabilization treatment of clay slope topsoil by organic polymer soil stabilizer[J]. Engineering Geology, 2010, 117(1):114-120.
  • Related Articles

    [1]FAN Wenxin, GAO Yang, WANG Pengfei, CHEN Yan, YUAN Xia, PENG Lijun, FU Yabo, ZHANG Zhongtao. Effect of Ni and Si additions on the microstructure and mechanical properties of Cu-7Sn alloy[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 85-95. DOI: 10.13264/j.cnki.ysjskx.2025.01.010
    [2]GUO Ziting, HUANG Jinchao, XIAO Qingmei, ZHONG Shengwen. Effect of composite conductive agent consisting of graphene and Super-P carbon black on the performance of LiNi0.5Co0.2Mn0.3O2 lithium-ion battery[J]. Nonferrous Metals Science and Engineering, 2023, 14(2): 227-234. DOI: 10.13264/j.cnki.ysjskx.2023.02.009
    [3]MIN Dingwei, CHEN Gong, WEN Tanggen, SHI Zhongning, HUANG Yipeng, YANG Shaohua. Electrochemical mechanism of copper electrodeposition in NaCl-KCl-MgCl2-Cu2S melts[J]. Nonferrous Metals Science and Engineering, 2023, 14(2): 182-188. DOI: 10.13264/j.cnki.ysjskx.2023.02.004
    [4]YANG Yuping, SU Ruiming, MA Siyi, NIE Sainan, LI Guanglong. Effects of Ni on structure and mechanical properties of Al-Cu-Mn alloy[J]. Nonferrous Metals Science and Engineering, 2023, 14(1): 67-73. DOI: 10.13264/j.cnki.ysjskx.2023.01.009
    [5]XIE Fanghao, LI Jianan, DENG Shenghua, LI Weirong. The microstructure and mechanical properties of selective laser melted Al-Zn-Mg-Sc alloy[J]. Nonferrous Metals Science and Engineering, 2022, 13(4): 61-69. DOI: 10.13264/j.cnki.ysjskx.2022.04.008
    [6]QUAN Yongqi, CHENG Hanming, WANG Herui, ZHAO Yao, LIN Gaoyong. Effects of heat treatment on the microstructure and mechanical properties of die casting AlSi10MnMg alloy[J]. Nonferrous Metals Science and Engineering, 2022, 13(2): 98-106. DOI: 10.13264/j.cnki.ysjskx.2022.02.014
    [7]WU Wenbo, CUI Shuhui, ZHENG Xueqing, XING Meishan. Determination the production process of Cu-Ni-Si alloy for the motor[J]. Nonferrous Metals Science and Engineering, 2020, 11(2): 76-81. DOI: 10.13264/j.cnki.ysjskx.2020.02.011
    [8]HE Zhexiang, XIAO Wei, LI Xiang, WEI Zhen. Comparative study on the passivation of heavy metals in soil among curing agent based on blast furnace slag, calcium oxide and phosphate[J]. Nonferrous Metals Science and Engineering, 2016, 7(1): 54-68. DOI: 10.13264/j.cnki.ysjskx.2016.01.011
    [9]ZHANG Ming-ming, WU Yu. On the aging behavior of Cu-Ni-Si-Zr alloy[J]. Nonferrous Metals Science and Engineering, 2012, 3(2): 12-16. DOI: 10.13264/j.cnki.ysjskx.2012.02.017
    [10]XIONG Li, YE Xue-jun, HU Cheng, LIU Zi-shuai, QIU Zhen-zhong. Sorting effects and mechanism of SA-3 on copper bismuth sulphide[J]. Nonferrous Metals Science and Engineering, 2011, 2(6): 83-85.

Catalog

    Article Metrics

    Article views (80) PDF downloads (11) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return