Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
WANG Hui, WANG Jian, WANG Ping, PAN Yue, WANG Ruixiang, XU Zhifeng. Trend of arsenic for the arsenic-containing gold ores or concentrates in the process of pretreatment[J]. Nonferrous Metals Science and Engineering, 2023, 14(3): 329-337. DOI: 10.13264/j.cnki.ysjskx.2023.03.005
Citation: WANG Hui, WANG Jian, WANG Ping, PAN Yue, WANG Ruixiang, XU Zhifeng. Trend of arsenic for the arsenic-containing gold ores or concentrates in the process of pretreatment[J]. Nonferrous Metals Science and Engineering, 2023, 14(3): 329-337. DOI: 10.13264/j.cnki.ysjskx.2023.03.005

Trend of arsenic for the arsenic-containing gold ores or concentrates in the process of pretreatment

More Information
  • Received Date: March 15, 2022
  • Revised Date: June 08, 2022
  • Available Online: June 30, 2023
  • In recent years, the resources for free-milling gold ores have been nearly exhausted with the large-scale mining of gold deposits. Complex and refractory gold ores have become the main raw materials for gold production from ores in China's gold industry, such as arsenic-containing gold ores or concentrates. For arsenic-containing gold ores or concentrates, fine-grained gold is usually distributed in submicroscopic structures and encapsulated in sulfide minerals, such as pyrite and arsenopyrite, which means that gold recovery by leaching is extremely difficult without pretreatment. The pretreatment methods for arsenic-containing gold ores or concentrates include bio-oxidation, pressure oxidation, chemical oxidation, two-stage roasting, etc. In this paper, the trend of arsenic in the process of pretreatment is discussed by reviewing the basic mechanism and relevant research for the main pretreatment methods. In addition, future research directions on pretreatment methods are also proposed for arsenic-containing gold ores or concentrates.
  • [1]
    矿道网. 全球黄金查明开发储量约为10万吨, 最近3个月金价上涨了近15%[J]. 黄金科学技术, 2021, 29(3): 456. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKJ202103019.htm
    [2]
    张磊, 郭学益, 田庆华, 等. 难处理金矿预处理方法研究进展及工业应用[J]. 黄金, 2021, 42(6): 60-68. https://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ202106012.htm
    [3]
    胡燕清, 杨声海, 陈永明. 某毒砂金矿硫氰酸盐氨性体系加压氧化提金探索试验[J]. 有色金属(冶炼部分), 2012(9): 34-37. doi: 10.3969/j.issn.1007-7545.2012.09.010
    [4]
    王海娟. 西南含砷金矿区砷富集植物筛选及其除砷应用研究[D]. 昆明: 昆明理工大学, 2012.
    [5]
    崔日成, 杨洪英, 张谷平, 等. pH值对浸矿细菌的活化以及金精矿脱砷的影响[J]. 东北大学学报(自然科学版), 2008, 29(11): 1597-1600. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX200811019.htm
    [6]
    夏光祥, 石伟, 涂桃枝, 等. 氨浸法预处理含砷难浸金矿石的应用研究[J]. 黄金, 1996, 17(10): 26-32. https://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ610.007.htm
    [7]
    许才武, 蒋中刚, 邱洋, 等. 贵州卡林型金矿的微观形貌及赋存状态研究[J]. 有色金属科学与工程, 2022, 13(4): 98-106. doi: 10.13264/j.cnki.ysjskx.2022.04.012
    [8]
    田晓娟, 王艳, 杜德平, 等. 微生物氧化脱砷浸取金的方法[J]. 物探与化探, 2008, 32(3): 298-300, 303. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH200803015.htm
    [9]
    方成开. 从奥林匹亚难处理砷黄铁矿精矿中提取金的细菌氧化条件[J]. 湿法冶金, 1995, 14(4): 23-31. https://www.cnki.com.cn/Article/CJFDTOTAL-SFYJ504.003.htm
    [10]
    李骞. 含砷金矿生物预氧化提金基础研究[D]. 长沙: 中南大学, 2007.
    [11]
    胡燕清. 氨性硫氰酸铵从难处理硫化金矿氧压浸金研究[D]. 长沙: 中南大学, 2012.
    [12]
    郑存江, 张辉, 冯明伸, 等. 难浸含砷金精矿生物预氧化生产实践[J]. 黄金, 2000, 21(11): 31-36. https://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ200011008.htm
    [13]
    印明善, 马秀贞. 中度嗜热细菌处理难冶含砷黄铁矿金精矿的进展[J]. 黄金科技动态, 1991(3): 23-24. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKJ199103005.htm
    [14]
    冯肇伍. 高砷高硫金精矿细菌氧化-氰化提金试验研究[J]. 黄金科学技术, 2003, 11(4): 12-16. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKJ200304003.htm
    [15]
    裘荣庆. 含砷金精矿细菌氧化预处理[J]. 有色金属, 1991(3): 72-78, 83. https://www.cnki.com.cn/Article/CJFDTOTAL-YOUS199103012.htm
    [16]
    程东会, 何江涛, 王立群, 等. 含砷难浸金精矿柱浸生物氧化回收金[J]. 有色金属(冶炼部分), 2006(6): 32-36. https://www.cnki.com.cn/Article/CJFDTOTAL-METE200606010.htm
    [17]
    李佳峰, 杨洪英, 佟琳琳, 等. 抛刀岭难处理金精矿细菌氧化-提金实验研究[J]. 黄金科学技术, 2018, 26(2): 248-253. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKJ201802018.htm
    [18]
    苏平. 细菌氧化处理杨金沟含砷含碳金精矿的试验研究[J]. 矿产综合利用, 1993(5): 1-3. https://www.cnki.com.cn/Article/CJFDTOTAL-KCZL199305000.htm
    [19]
    郑存江, 熊英, 柏全金, 等. 小河金矿的细菌预氧化研究[J]. 陕西地质, 2000, 18(2): 93-97. https://www.cnki.com.cn/Article/CJFDTOTAL-SXDY200002013.htm
    [20]
    高向东, 王阳, 杨延宙, 等. 采用压热氧化预处理-全泥氰化浸出工艺从硫砷金精矿中浸出金[J]. 湿法冶金, 2020, 39(6): 473-477. https://www.cnki.com.cn/Article/CJFDTOTAL-SFYJ202006005.htm
    [21]
    DEMOPOULOS G P, PAPANGELAKIS V G. Acid pressure oxidation of refrectory gold mineral carriers[C]//Proceedings of the Metallurgical Society of the Canadian Pergamon Institute of Mining and Metallurgy, 1987: 341-357.
    [22]
    董博文, 李黎婷, 刘升明. 高硫高砷金精矿高压预氧化-氰化提金工艺研究[J]. 矿产综合利用, 2011(6): 10-12, 57. https://www.cnki.com.cn/Article/CJFDTOTAL-KCZL201106004.htm
    [23]
    李健. 含砷金精矿催化压力氧化-氰化提金试验研究[J]. 黄金, 2021, 42(1): 64-67. https://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ202101013.htm
    [24]
    殷书岩, 杨洪英. 难处理金矿加压氧化预处理技术及发展[J]. 贵金属, 2008, 29(1): 56-59. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSZ200801013.htm
    [25]
    蔡创开. 难处理金矿加压预氧化扩大连续试验[J]. 有色金属(冶炼部分), 2021(6): 66-71. https://www.cnki.com.cn/Article/CJFDTOTAL-METE202106011.htm
    [26]
    李大江. 化学氧化预处理难浸金矿研究进展[J]. 矿冶, 2011, 20(1): 50-53, 57. https://www.cnki.com.cn/Article/CJFDTOTAL-KYZZ201101011.htm
    [27]
    钱方珺. 臭氧和三氯化铁氧化高硫高砷难浸金精矿的预处理试验研究[D]. 上海: 东华大学, 2009.
    [28]
    WANG J, WANG W, BAI Y L, et al. Study on pre-oxidation of a high-arsenic and high-sulfur refractory gold concentrate with potassium permanganate and hydrogen peroxide[J]. Transactions of the Indian Institute of Metals, 2020, 73(3): 577-586.
    [29]
    田树国. 高砷金矿常温常压碱浸预处理工艺研究[D]. 赣州: 江西理工大学, 2009.
    [30]
    李勇, 徐忠敏, 吕翠翠, 等. 碱浸预处理提高某含砷锑难处理金精矿回收率的试验研究[J]. 黄金, 2013, 34(3): 61-64. https://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ201303022.htm
    [31]
    孟宇群, 吴敏杰, 宿少玲, 等. 难浸含砷金精矿的碱性常温、常压强化预氧化工艺工业化研究[J]. 黄金, 2004, 25(2): 26-31. https://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ200402008.htm
    [32]
    王云. 难处理金精矿焙烧技术的发展及展望[J]. 有色金属(冶炼部分), 2002(4): 29-33. https://www.cnki.com.cn/Article/CJFDTOTAL-METE200204008.htm
    [33]
    陈潮方, 邱仙辉, 邱廷省, 等. 氰化尾渣的性质特点与综合利用研究现状[J]. 有色金属科学与工程, 2022, 13(4): 107-115. doi: 10.13264/j.cnki.ysjskx.2022.04.013
    [34]
    张永峰, 武鑫. 两段焙烧工艺在黄金生产中的应用[J]. 中国有色冶金, 2010, 39(5): 37-40. https://www.cnki.com.cn/Article/CJFDTOTAL-YSYL201005016.htm
    [35]
    江国红, 易聘泉. 从含砷难浸金矿石中提取金银铜锌的工艺试验研究[J]. 湿法冶金, 1997, 16(1): 6-9. https://www.cnki.com.cn/Article/CJFDTOTAL-SFYJ199701001.htm
    [36]
    徐洁书. 两段焙烧技术处理高砷硫金精矿探讨[J]. 硫酸工业, 2009 (3): 40-41. https://www.cnki.com.cn/Article/CJFDTOTAL-LSGY200903013.htm
    [37]
    李新春, 郭持皓. 新疆阿希金矿含砷难处理金精矿两段焙烧工艺[J]. 有色金属工程, 2014, 4(1): 42-44. https://www.cnki.com.cn/Article/CJFDTOTAL-YOUS201401016.htm
    [38]
    曹欣, 雷力, 王智伟, 等. 川北高砷高碳微细粒难处理金矿石焙烧工艺研究[J]. 黄金, 2021, 42(5): 52-55. https://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ202105011.htm
    [39]
    廖元杭. 含铜砷金精矿二段焙烧-酸浸-氰化工艺研究[J]. 有色冶金设计与研究, 2013, 34(1): 7-10. https://www.cnki.com.cn/Article/CJFDTOTAL-YSYJ201301006.htm
    [40]
    杨晓峰, 梁树丰, 潘凤娇. 高硫富砷金矿氧化预处理工艺研究现状[J]. 黄金, 2022, 43(2): 85-89. https://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ202202015.htm

Catalog

    Article Metrics

    Article views (225) PDF downloads (29) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return