Citation: | HUANG Jingming, WANG Zhaowen, LIU Zengwei, TIAN Yabin, YE Changmei, YANG Shaohua. Analysis of local corrosion of 7075 aluminum alloy by SECM[J]. Nonferrous Metals Science and Engineering, 2019, 10(3): 14-20. DOI: 10.13264/j.cnki.ysjskx.2019.03.003 |
[1] |
FLECK P, CALLEROS D, MADSEN M, et al.Retro gression and reaging of 7075 T6 aluminum alloy[A]//Mater Sci Forum[C].Swizerland: 2000 Trans Tech Publications, 2000, 649-654.
|
[2] |
TSAI T C, CHANG J C, CHUANG T H. Stress corrosion cracking of super plastically formed 7475 aluminum alloy[J]. Metall Mater Trans A, 1996, 28A(10):2113-2121.
|
[3] |
屈苗, 刘宇, 肖政兵.铝合金夹杂物基本性质的第一性原理研究[J].有色金属科学与工程, 2018, 9(6): 22-25. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201806001
|
[4] |
刘兵, 彭超群, 王日初, 等.大飞机用铝合金的研究现状及展望[J].中国有色金属学报, 2010, 20(9):1705-1709. http://d.old.wanfangdata.com.cn/Periodical/zgysjsxb201009008
|
[5] |
李宁.浅谈金属材料的防腐能力改进措施[J].世界有色金属, 2016(24):233. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sjysjs201612119
|
[6] |
ARULIAH R, WANG X, MANIVANNAN S, et al. Airborne bacteria associated with corrosion of mild steel 1010 and aluminum alloy 1100[J]. Environmental Science and Pollution Research, 2017, 24(9): 8120-8136. doi: 10.1007/s11356-017-8501-z
|
[7] |
HEI H, XIA D H, SONG S Z, et al.Sensing atmospheric corrosion of carbon steel and low-alloy steel using the electrochemical noise technique: effects of weather conditions[J]. Protection of Metals and Physical Chemistry of Surfaces, 2017, 53(6): 1100-1113. doi: 10.1134/S2070205117060119
|
[8] |
李丽, 苏霄.1050A铝合金模拟海洋大气环境腐蚀行为的中性盐雾试验[J].腐蚀与防护, 2014, 3(4):367-386. http://cdmd.cnki.com.cn/Article/CDMD-10076-1015533051.htm
|
[9] |
周松, 许良, 回丽, 等.不同腐蚀环境下高强铝合金腐蚀行为[J].中国机械工程, 2017(16): 2000-2007. doi: 10.3969/j.issn.1004-132X.2017.16.016
|
[10] |
张正, 宋诗哲, 卢玉琢, 等.模拟污染潮湿大气环境下LY12CZ、LC4CS铝合金腐蚀行为研究[J].中国腐蚀与防护学报, 2007, 27(3):129-133. doi: 10.3969/j.issn.1005-4537.2007.03.001
|
[11] |
杨少华, 刘增威, 林明, 等.7075铝合金在不同pH值NaCl溶液中的腐蚀行为[J].有色金属科学与工程, 2017, 8(4): 24-28. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201612011
|
[12] |
孙飞龙, 李晓刚, 卢琳, 等.5052和6061铝合金在中国南海深海环境下的腐蚀行为研究[J].金属学报, 2013, 49(10):1219-1226. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsxb201310009
|
[13] |
郑传波, 李春岭, 益帼, 等.高强铝合金6061和7075在模拟海洋大气环境中的腐蚀行为[J].材料保护, 2014, 47(6):38-40. http://d.old.wanfangdata.com.cn/Periodical/clbh201406011
|
[14] |
BARD A J, DENUAULT G, FRIESINGER R A, et al. Scanning electrochemical microscopy: theory and application of the transient (chronoamperometric) SECM response[J]. Analytical Chemistry, 1991, 63(13):1282-1288. doi: 10.1021/ac00013a019
|
[15] |
WEI C, BARD A J, MIRKIN M V. Scanning electrochemical microcopy.31.appilcaiton of secm to the study of charge-transfer process at the liquid-liquid interface[J]. Phys Chem, 1995, 99(43):16033-16042. doi: 10.1021/j100043a050
|
[16] |
MARIELA A B H, JOSE L F. Analysis of the hydrogen electrode reaction mechanism in thin-layer cells. 3. Study of hydrogen electro-oxidation by scanning electrochemical microscopy[J].Journal of Electroanalytical Chemistry, 2017(784):33-40. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b13b39b97f0ba93becebfe3713d27455
|
[17] |
何辉超, SEAN P B, BUDDIE C M, et al.扫描电化学显微镜在光电能源研究领域的应用[J].化学进展, 2016(6):908-912. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxjz201606012
|
[18] |
GRAEDEL T E.Corrosion mechanisms for aluminum exposed to the heat atmosphere[J]. Journal of the Electrochemical Society, 1989, 136(4): 204-212. doi: 10.1149/1.2096869
|
[19] |
李春岭.7075铝合金应力腐蚀开裂机理研究[D].镇江: 江苏科技大学, 2014(6): 55-58.
|
[20] |
马景灵, 文九巴, 卢现稳.η相在Al-Zn-In-Mg-Ti牺牲阳极合金中的活化作用[J].特种制造及有色合金, 2010, 30(1):18-20. http://d.old.wanfangdata.com.cn/Periodical/tzzzjyshj201001007
|
[1] | MIN Dingwei, CHEN Gong, WEN Tanggen, SHI Zhongning, HUANG Yipeng, YANG Shaohua. Electrochemical mechanism of copper electrodeposition in NaCl-KCl-MgCl2-Cu2S melts[J]. Nonferrous Metals Science and Engineering, 2023, 14(2): 182-188. DOI: 10.13264/j.cnki.ysjskx.2023.02.004 |
[2] | MA Junqi, TAO Xingzhen, PENG Lin, XIE Yufei. Crack detection and recognition based on improved BiSeNetV2[J]. Nonferrous Metals Science and Engineering, 2022, 13(6): 91-97. DOI: 10.13264/j.cnki.ysjskx.2022.06.012 |
[3] | GAN Minglong, LI Yameng, FU Junxiang. Phase transition and upconversion luminescent properties of NaYF4: Yb, Er@SiO2 at high temperature[J]. Nonferrous Metals Science and Engineering, 2021, 12(1): 75-80. DOI: 10.13264/j.cnki.ysjskx.2021.01.010 |
[4] | YANG Shaohua, ZHANG Dancheng, ZHAO Yujuan, LI Linshan. A study on the corrosion behavior of 5083 aluminum magnesium alloy in the NaCl solutions of different pH by SECM[J]. Nonferrous Metals Science and Engineering, 2018, 9(1): 22-27. DOI: 10.13264/j.cnki.ysjskx.2018.01.004 |
[5] | YANG Shaohua, LIU Zengwei, LIN Ming, ZHAO Yujuan, LI Linshan. Corrosion behavior of 7075 aluminum alloy in NaCl solutions with different pH values[J]. Nonferrous Metals Science and Engineering, 2017, 8(4): 7-11. DOI: 10.13264/j.cnki.ysjskx.2017.04.002 |
[6] | ZHAO Kui, YU Bin, LI Qiseng, ZHU Zhicheng, KUANG Zeliang. Experimental study on in-situ stress measurement from marble using acoustic emission method[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 88-93. DOI: 10.13264/j.cnki.ysjskx.2017.03.015 |
[7] | ZHANG Yinghui, PENG Kai, FENG Xingyu, HU Yujun. Numerical simulation of deformation behavior and secondary phase orientation in H65 brass alloys ECAP[J]. Nonferrous Metals Science and Engineering, 2017, 8(1): 105-111. DOI: 10.13264/j.cnki.ysjskx.2017.01.018 |
[8] | Yang Fengli, Wang Haoran, Yang Shaohua, Wang Jun, Lai Xiaohui. The Study of Electrochemical Behavior of Sr2+ in LiF-SrF2-SrO Molten Salt System[J]. Nonferrous Metals Science and Engineering, 2016, 7(5): 33-36, 66. DOI: 10.13264/j.cnki.ysjskx.2016.05.006 |
[9] | YAO Wen-li, DONG Su-wei, CHEN Jin-qing, CHEN Xing-bin, LIU Ping. The Electrochemical Corrosion Behavior of Hot-dip Al-Zn Coatings in NaCl Aqueous Solution[J]. Nonferrous Metals Science and Engineering, 2011, 2(3): 13-17. |
[10] | WANG Jian-ru, LIU Zu-wen, ZHU Qiang, XU Jian-hong. On the Factors Affecting the Phosephorus and Nitrogen Removal by Carrousel Oxidation Ditch Process[J]. Nonferrous Metals Science and Engineering, 2011, 2(1): 51-54. |