Citation: | LIU Ruoxu, MAO Xiqin, OU Meigui, LIANG Yu, XIAO Qiulei. Effect of cold drawing deformation on the microstructure and properties of pure copper[J]. Nonferrous Metals Science and Engineering, 2022, 13(2): 67-75. DOI: 10.13264/j.cnki.ysjskx.2022.02.009 |
[1] |
李龙健, 于凤云, 李仁庚, 等. 高性能铜合金研究现状及发展趋势[J]. 特种铸造及有色合金, 2021, 41(3): 293-298. https://www.cnki.com.cn/Article/CJFDTOTAL-TZZZ202103009.htm
|
[2] |
曾翠婷. 铜棒线材市场前景探究及线材生产工艺概述[J]. 有色金属加工, 2021, 50(1): 5-7. https://www.cnki.com.cn/Article/CJFDTOTAL-YSJF202101016.htm
|
[3] |
LEE B, LI W. Performance of different layers of graphene as protective coating for copper wire[J]. Materials Letters, 2020, 273: 127875. doi: 10.1016/j.matlet.2020.127875
|
[4] |
PARDIS N, CHEN C, EBRAHIMI R, et al. Microstructure, texture and mechanical properties of cyclic expansion extrusion deformed pure copper[J]. Materials Science and Engineering: A, 2015, 628: 423-432. doi: 10.1016/j.msea.2015.01.003
|
[5] |
JIANG Y B, LI Y S, LEI Y, et al. Cross-sectional structure, microstructure and mechanical property evolutions of brass cladding pure copper stranded wire composite during drawing[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(7): 1857-1872. doi: 10.1016/S1003-6326(20)65345-6
|
[6] |
马吉苗, 刘峰, 刘龙明, 等. Cu-Ni-Si-P合金冷加工硬化及再结晶温度的研究[J]. 有色金属科学与工程, 2017, 8(2): 43-46. doi: 10.13264/j.cnki.ysjskx.2017.02.007
|
[7] |
ZHANG J, MA M, SHEN F, et al. Influence of deformation and annealing on electrical conductivity, mechanical properties and texture of Al-Mg-Si alloy cables[J]. Materials Science and Engineering: A, 2018, 710: 27-37. doi: 10.1016/j.msea.2017.10.065
|
[8] |
SIMON T, MESGUICH D, LONION A, et al. Nanostructured 1% silver-copper composite wires with a high tensile strength and a high electrical conductivity[J]. Materials Science and Engineering: A, 2019, 761: 138048. doi: 10.1016/j.msea.2019.138048
|
[9] |
MOHAN B, SHARMA S, MOURAD A H I, et al. An overview of the microstructure and mechanical properties of copper tube by SPD process[J]. Materials Today: Proceedings, 2021, 46: 4289-4294. doi: 10.1016/j.matpr.2021.03.125
|
[10] |
MA K, WEN H, HU T, et al. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation strengthened aluminum alloy[J]. Acta Materialia, 2014, 62: 141-155. doi: 10.1016/j.actamat.2013.09.042
|
[11] |
LI T J, WANG Y Q, YANG M, et al. High strength and conductivity copper matrix composites reinforced by in-situ graphene through severe plastic deformation processes[J]. Journal of Alloys and Compounds, 2021, 851: 156703. doi: 10.1016/j.jallcom.2020.156703
|
[12] |
LI R, GUO E, CHEN Z, et al. Optimization of the balance between high strength and high electrical conductivity in CuCrZr alloys through two-step cryorolling and aging[J]. Journal of Alloys and Compounds, 2019, 771: 1044-1051. doi: 10.1016/j.jallcom.2018.09.040
|
[13] |
LIN H R, SHAO H F, ZHAN Z J, et al. Stress relaxation behaviors and mechanical properties of precipitation strengthening copper alloys[J]. Journal of Alloys and Compounds, 2021, 861: 158537.
|
[14] |
AFIFEH M, HOSSEINIPOUR S J, JAMAATI R. Nanostructured copper matrix composite with extraordinary strength and high electrical conductivity produced by asymmetric cryorolling[J]. Materials Science and Engineering, 2019, 763: 138146. doi: 10.1016/j.msea.2019.138146
|
[15] |
IHIRA R, GWON H, KASADA R, et al. Improvement of tensile properties of pure Cu and CuCrZr alloy by cryo-rolling process[J]. Fusion Engineering and Design, 2016, 109/111: 485-488. doi: 10.1016/j.fusengdes.2016.02.070
|
[16] |
JOO H S, KIM Y N, HWANG S K, et al. The effect of wire drawing and aging on mechanical and electrical properties of Cu-Cr-Zr alloy[J]. Procedia Engineering, 2017, 207: 1129-1134. doi: 10.1016/j.proeng.2017.10.1071
|
[17] |
KAUFFMANN A, GEISSLER D, FREUDENBERGER J. Thermal stability of electrical and mechanical properties of cryo-drawn Cu and CuZr wires[J]. Materials Science and Engineering: A, 2016, 651: 567-573. doi: 10.1016/j.msea.2015.10.119
|
[18] |
YAO G, MEI Q, LI J, et al. Hard copper with good electrical conductivity fabricated by accumulative roll-bonding to ultrahigh strains[J]. Metals, 2016, 6(5): 115. doi: 10.3390/met6050115
|
[19] |
FOROUZANMEHR N, NILI A M, SAMADI K M. On the microstructure and mechanical properties of severely cold shape rolled Cu[J]. Materials Science and Engineering: A, 2016, 650: 264-272. doi: 10.1016/j.msea.2015.10.058
|
[20] |
SUN P F, ZHANG P L, HOU J P, et al. Quantitative mechanisms behind the synchronous increase of strength and electrical conductivity of cold-drawing oxygen-free Cu wires[J]. Journal of Alloys and Compounds, 2021, 863: 158759.
|
[21] |
ZHU R F, LIU J N, TANG G Y, et al. Properties, microstructure and texture evolution of cold rolled Cu strips under electropulsing treatment[J]. Journal of Alloys and Compounds, 2012, 544(1): 203-208.
|
[22] |
FIELD D, BRADFORD L, NOWELL M, et al. The role of annealing twins during recrystallization of Cu[J]. Acta Mater, 2007, 55(12): 4233-4241. doi: 10.1016/j.actamat.2007.03.021
|
[23] |
GLEITER H. The formation of annealing twins[J]. Acta Metall, 1969, 17(12): 1421-1428.
|
[24] |
HAN S Z, CHOI E A, LIM S H, et al. Alloy design strategies to increase strength and its trade-offs together[J]. Progress in Materials Science, 2021, 117: 100720.
|
[25] |
FIELD D P, EAMES R C, LILLO T M. The role of shear stress in the formation of annealing twin boundaries in copper[J]. Scripta Mater, 2006, 54(6): 983-986.
|
[26] |
ZEPEDA R L A, STUKOWSKI A, OPPELSTRUP T, et al. Atomistic insights into metal hardening[J]. Nature Materials, 2021, 20(3): 315-320.
|
[27] |
撒世勇, 王平. Ti-15-3板材中晶界特征及其对疲劳裂纹萌生与扩展的影响[J]. 中国有色金属学报, 2010, 20(增刊1): 442-445. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ2010S1092.htm
|
[1] | Li Xueshuai, Guo Lili, Zhang Jianbo, Wang Haibin, Zheng Dianshui. Anisotropy and texture correlation analysis of deep-drawing copper strip[J]. Nonferrous Metals Science and Engineering, 2020, 11(4): 44-48. DOI: 10.13264/j.cnki.ysjskx.2020.04.007 |
[2] | Zhang Ying, Zhang Ting-an. Research progress for vanadium extraction from vanadium leach solution by solvent extraction[J]. Nonferrous Metals Science and Engineering, 2017, 8(5): 14-20. DOI: 10.13264/j.cnki.ysjskx.2017.05.002 |
[3] | WANG Fang, Zhao Hongxing, XIAO Yanfei, XU Zhifeng. Solvent extraction of thioarsenite by CO32--type tOMAC in alkaline solutions[J]. Nonferrous Metals Science and Engineering, 2016, 7(2): 14-18. |
[4] | YANG Ming, WU Di, YE Xinyu, JIAO Yunfen, WU Long, HUANG Xin, LI Qin. Preparation of large particle neodymium oxide by oxalic acid precipitation with stripping solution[J]. Nonferrous Metals Science and Engineering, 2015, 6(1): 106-110. DOI: 10.13264/j.cnki.ysjskx.2015.01.020 |
[5] | LI Bo. Research advances of molybdenum solvent extraction in acidic system[J]. Nonferrous Metals Science and Engineering, 2013, 4(6): 33-36. DOI: 10.13264/j.cnki.ysjskx.2013.06.021 |
[6] | FAN Jin-jun, DENG Sheng-hua, XIE Fang-hao, YANG You-ming. Experiment on Back-extraction of Cr(Ⅲ) in Acidic Extractant by Alkali[J]. Nonferrous Metals Science and Engineering, 2011, 2(4): 97-100. |
[7] | ZHAO Hong-jin, ZHANG Ying-hui, WANG Da, YANG Bin, XU Gao-lei. Production Process of Cu/Al Cladding Strip Used for Cable[J]. Nonferrous Metals Science and Engineering, 2010, 1(01): 15-17, 23. |
[8] | ZHANG Chun-lei, LIU Xue-jun. Application of Global Positioning System in Strip Mine[J]. Nonferrous Metals Science and Engineering, 2008, 22(4): 1-3. |
[9] | DAI Jiang-hong, ZENG Qing-yun, CHEN Qing-gen. Study on Technique of Microwave Extraction for Producing Copper Sulfate from Leaching Solution of Low Grade Copper Ores[J]. Nonferrous Metals Science and Engineering, 2006, 20(2): 23-25. |