Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
PAN Wenhan, XU Mingsan, WEI Tieping, YE Jianhua, ZHU Fengli, YANG Linyi. Effect and optimization of mechanical properties of selected laser melting arch lattice[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 43-53. DOI: 10.13264/j.cnki.ysjskx.2025.01.006
Citation: PAN Wenhan, XU Mingsan, WEI Tieping, YE Jianhua, ZHU Fengli, YANG Linyi. Effect and optimization of mechanical properties of selected laser melting arch lattice[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 43-53. DOI: 10.13264/j.cnki.ysjskx.2025.01.006

Effect and optimization of mechanical properties of selected laser melting arch lattice

More Information
  • Received Date: August 17, 2023
  • Revised Date: February 19, 2024
  • To enhance the mechanical properties of the lattice structure formed by selective laser melting under the premise of lightweight, the arch feature was incorporated into the lattice structure design. Considering the combined effects of various structural parameters, a mathematical relationship model of arch height-to-span ratio, strut diameter and cell height with lattice elastic modulus and compressive strength was established by response surface test. The impact of these structural parameters on the elastic modulus and compressive strength was analyzed and an optimal combination of parameters was determined. The findings reveal that the arch height-to-span ratio has the most significant influence on the elastic modulus and compressive strength of the structure. As the arch height-to-span ratio increases, both the elastic modulus and compressive strength of the structure demonstrate notable improvements. The optimal structural parameter combination of the arch lattice structure obtained by optimization is the arch height-to-span of 0.7, strut diameter of 1.2 mm and cell height of 4.5 mm. The corresponding elastic modulus is measured at 2.012 GPa, while the compressive strength reaches 79.254 MPa. These values represent a respective increase of 21.57% and 35.60% compared to the non-optimized configuration. The mechanical properties of the structure have been significantly enhanced. This research can provide references for the design and optimization of lightweight lattice structures.

  • [1]
    汪飞雪, 张天翊, 刘鹏举, 等. 基于SLM工艺的316L四棱锥点阵结构力学性能[J]. 塑性工程学报, 2021, 28(10): 99-106.
    [2]
    汤永锋, 路平, 刘斌, 等. 不同梯度变化方式的不规则多孔结构设计与力学性能分析[J]. 中国机械工程, 2022, 33(23): 2859-2866.
    [3]
    杨建明, 汤阳, 顾海, 等. 3D打印制备多孔结构的研究与应用现状[J]. 材料导报, 2018, 32(15): 2672-2682.
    [4]
    XIAO Z F, YANG Y Q, XIAO R, et al. Evaluation of topology-optimized lattice structures manufactured via selective laser melting[J]. Materials & Design, 2018, 143: 27-37.
    [5]
    杜义贤, 李涵钊, 田启华, 等. 基于能量均匀化的高剪切强度周期性点阵结构拓扑优化[J]. 机械工程学报, 2017, 53(18): 152-160.
    [6]
    赵冰, 李志强, 侯红亮, 等. 金属三维点阵结构制备技术研究进展[J]. 稀有金属材料与工程, 2016, 45(8): 2189-2200.
    [7]
    郑敏, 杨瑾, 张华. 多孔金属材料的制备及应用研究进展[J]. 材料导报, 2022, 36(18): 78-93.
    [8]
    吴鸿飞, 王维荣, 王国伟, 等. 选区激光熔化成形点阵结构的各向异性对力学性能的影响[J]. 稀有金属材料与工程, 2022, 51(4): 1397-1405.
    [9]
    任会兰, 申海艇, 栗建桥. 单轴压缩下Ti-6Al-4V空心点阵结构的力学行为[J]. 中国科学:技术科学, 2021, 51(3): 293-304.
    [10]
    曾寿金, 李传生, 刘广, 等. 选区激光熔化梯度多孔支架力学性能和能量吸收研究[J]. 中国机械工程, 2022, 33(19): 2364-2371.
    [11]
    PIRINU A, PRIMO T, DEL PRETE A, et al. Mechanical behaviour of AlSi10Mg lattice structures manufactured by the Selective Laser Melting (SLM)[J]. The International Journal of Advanced Manufacturing Technology, 2023, 124(5): 1651-1680.
    [12]
    谢芳浩, 李加南, 邓声华, 等. 选区激光熔化Al-Zn-Mg-Sc合金组织与性能研究[J]. 有色金属科学与工程, 2022, 13(4): 61-69, 147.
    [13]
    张国庆, 杨永强, 宋长辉, 等. 激光选区熔化成型CoCrMo多孔结构的设计与性能研究[J]. 中国激光, 2015, 42(11): 59-68.
    [14]
    SUN J F, YANG Y Q, WANG D. Mechanical properties of a Ti6Al4V porous structure produced by selective laser melting[J]. Materials & Design, 2013, 49: 545-552.
    [15]
    CAO X F, DUAN S Y, LIANG J, et al. Mechanical properties of an improved 3D-printed rhombic dodecahedron stainless steel lattice structure of variable cross section[J]. International Journal of Mechanical Sciences, 2018, 145: 53-63.
    [16]
    CRUPI V, KARA E, EPASTO G, et al. Static behavior of lattice structures produced via direct metal laser sintering technology[J]. Materials & Design, 2017, 135: 246-256.
    [17]
    ZHU G H, WEN D W, WEI L L, et al. Mechanical performances of novel cosine function cell-based metallic lattice structures under quasi-static compressive loading[J]. Composite Structures, 2023, 314: 116962.
    [18]
    纪小刚, 张建安, 栾宇豪, 等. 仿皮肤三维多孔点阵结构压缩吸能性能研究[J]. 机械工程学报, 2021, 57(15): 222-230.
    [19]
    宋英杰, 张红梅, 顾冬冬, 等. 激光增材制造NiTi轻量化点阵结构变形与回复行为[J]. 中国激光, 2022, 49(14): 231-243.
    [20]
    康建峰, 王玲, 孙畅宁, 等. 面向3D打印可变模量金属假体的微结构设计[J]. 机械工程学报, 2017, 53(5): 175-180.
    [21]
    MISHRA A K, CHAVAN H, KUMAR A. Effect of cell size and wall thickness on the compression performance of triply periodic minimal surface based AlSi10Mg lattice structures[J]. Thin-Walled Structures, 2023, 193: 111214.
    [22]
    江尧峰, 许明三, 曾寿金, 等. SLM成型316L体心立方点阵结构力学性能优化[J]. 塑性工程学报, 2023, 30(4): 178-186.
    [23]
    宋昊政. 基于SLM多孔结构腰椎融合器的设计与性能研究[D].杭州:杭州电子科技大学, 2020.
    [24]
    YAO J, ZHAO L, DING R C, et al. Study on the quasistatic compression performance of arch microstrut lattice structure by selective laser melting[J]. Advanced Engineering Materials, 2022, 24(5): 2101156.
    [25]
    ZHANG Y T, AIYITI W, DU S, et al. Design and mechanical behaviours of a novel tantalum lattice structure fabricated by SLM[J]. Virtual and Physical Prototyping, 2023, 18(1): 2192702.
    [26]
    王刚, 王馨, 宋小三, 等. 响应曲面法中BBD和CCD在优化巯基乙酰化壳聚糖制备条件中的比较[J]. 环境工程学报, 2018, 12(9): 2502-2511.
    [27]
    邢雷, 李金煜, 赵立新, 等. 基于响应面法的井下旋流分离器结构优化[J]. 中国机械工程, 2021, 32(15): 1818-1826.
    [28]
    周志伟, 龚红英, 贾星鹏, 等. 铝合金蓄能器壳体冷挤压成形多目标优化[J]. 有色金属科学与工程, 2021, 12(1): 67-74.
    [29]
    LI D M, QIN R X, XU J X, et al. Effect of heat treatment on AlSi10Mg lattice structure manufactured by selective laser melting: Microstructure evolution and compression properties[J]. Materials Characterization, 2022, 187: 111882.
    [30]
    段伟, 赵哲, 吉红伟, 等. 粉体性能及选区激光熔化打印工艺对AlSi10Mg合金致密化行为的影响[J]. 材料导报, 2019, 33(10): 1685-1690.
  • Related Articles

    [1]SHENG Yuhang, FAN Chunchao, WANG Zengjia, LI Guangbo, YANG Jiguang. Compressive strength and microstructure analysis of cemented tailings backfill with different cementing materials[J]. Nonferrous Metals Science and Engineering, 2024, 15(4): 570-576. DOI: 10.13264/j.cnki.ysjskx.2024.04.012
    [2]YANG Zhibin, CHENG Xieyue, CHENG Jie, SU Tong, MAO Rui, MA Han, LU Xionggang, LONG Hongming, JIANG Jian. Study on the preparation and properties of steel slag ecological hydraulic brick[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 481-488. DOI: 10.13264/j.cnki.ysjskx.2023.04.006
    [3]LING Chao, XUE Qingguo, SHEN Yingfeng, WANG Jingsong, GUO Wentao, LI Man. Study on mechanical performance of cold-pressed carbon-containing pellets proportioned with alkalized bagasse[J]. Nonferrous Metals Science and Engineering, 2017, 8(5): 121-126. DOI: 10.13264/j.cnki.ysjskx.2017.05.018
    [4]ZHUO Yu-long, CHEN Chen, CAO Shi-rong, WANG Xiao-jun, DENG Shu-qiang, FENG Xiao. Study on the strength characteristics of different block stone filling material[J]. Nonferrous Metals Science and Engineering, 2016, 7(5): 72-75. DOI: 10.13264/j.cnki.ysjikx.2016.05.013
    [5]CHEN Chen, ZHOU Yulong, XIAO Weijing, WANG Xiaojun, FENG Xiao. Three axis strength of deformation characteristics of rock rheometer based on RTS-500[J]. Nonferrous Metals Science and Engineering, 2016, 7(3): 89-93. DOI: 10.13264/j.cnki.ysjskx.2016.03.016
    [6]LEI Facheng, ZHAO Yuncai. Feasibility analysis of selecting gearbox bearings indenter based on ANSYS[J]. Nonferrous Metals Science and Engineering, 2015, 6(1): 116-120. DOI: 10.13264/j.cnki.ysjskx.2015.01.022
    [7]LI Sanhua, LEI Qian, LI Zhou, ZHANG Liang, WANG Mengying, LIU Huiqun. Micro-structures and properties of ultra-high strength Cu-Ni-Si-Mg-Cr alloy[J]. Nonferrous Metals Science and Engineering, 2014, 5(5): 35-38,78. DOI: 10.13264/j.cnki.ysjskx.2014.05.006
    [8]ZENG Peng, ZHAO Kui, DENG Xiao-ping, SHAO Hai, WANG Ming, WU Yue-sheng, GAO Zhong. Grey correlation analysis between rock's chemical elements and compressive strength[J]. Nonferrous Metals Science and Engineering, 2013, 4(1): 79-82, 100. DOI: 10.13264/j.cnki.ysjskx.2013.01.001
    [9]ZHANG Ming-ming, WU Yu. On the aging behavior of Cu-Ni-Si-Zr alloy[J]. Nonferrous Metals Science and Engineering, 2012, 3(2): 12-16. DOI: 10.13264/j.cnki.ysjskx.2012.02.017
    [10]ZHAO Yun-cai, LEI Fa-cheng. Strength Analysis of Ceramic Filter's Rotary Vacuum Based on ANSYS[J]. Nonferrous Metals Science and Engineering, 2009, 23(3): 42-45.
  • Cited by

    Periodical cited type(11)

    1. 郑娅,刘娟,喻强,穆艺臣,赵小玉,李小成. CO_2氧化多孔Mg_2Si制备微纳分级Si/C材料及储锂性能. 有色金属科学与工程. 2024(02): 256-264+273 . 本站查看
    2. 李虎振,甄蒙蒙,胡振中. 超薄壁TiO_2(B)纳米管制备及其储锂性能研究. 河北工业大学学报. 2024(03): 58-64 .
    3. 云红红,解寅珑,白韡,白健美,张轩. 电力系统储能中的多孔碳电池材料及应用实验研究. 化学工程师. 2023(09): 94-99 .
    4. 李芮,陈煜,丁能文,李之锋,李小成. 锂离子电池负极材料PSi@GO的制备及其电化学性能. 有色金属科学与工程. 2022(05): 16-22 . 本站查看
    5. 刘晓娴,郑娅,刘娟,喻强,李小成,韩峰,王剑秋. 部分炭化策略制备Si@C材料及其储锂性能研究. 有色金属科学与工程. 2022(06): 50-57 . 本站查看
    6. 张克,刘冬雪,文敏,尹艳红. 锂离子电池用氧化钨负极材料的改性. 有色金属科学与工程. 2022(06): 74-83 . 本站查看
    7. 汪若冰. 基于双模板法钠离子电池三维碳基负极复合材料的制备和性能. 廊坊师范学院学报(自然科学版). 2021(02): 35-38 .
    8. 籍向东,王勇,詹欢,潘春艳,岳国仁,曹成. 载硫酸高铈凹凸棒石的制备及其性能研究. 当代化工. 2021(06): 1280-1283 .
    9. 文敏,徐子其,张克,李轩,胡君辉,罗虹,尹艳红. 氧化钨/碳纳米管膜复合负极的制备及其储锂性能. 有色金属科学与工程. 2021(04): 58-65 . 本站查看
    10. 尚志同,戴儇,刘彬,喻强,李小成. 多孔硅@石墨烯-碳纳米管的制备及性能研究. 电源技术. 2021(12): 1533-1536+1557 .
    11. 张学硕,屈银虎,左文婧,高浩斐,王钰凡,张红. 3D打印锂离子电池硅负极的改性及制备. 西安工程大学学报. 2020(06): 52-58 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (11) PDF downloads (1) Cited by(14)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return