Citation: | ZHAO Chaonan, ZHANG Wenqi, YANG Jiancheng, SHANG Zhitong, LIANG Tongxiang, LI Xiaocheng. Preparation and lithium-storage performance of attapulgite-derived Si@C composite[J]. Nonferrous Metals Science and Engineering, 2020, 11(3): 52-58. DOI: 10.13264/j.cnki.ysjskx.2020.03.007 |
[1] |
CHEN Q Z, ZHU R L, HE H P, et al. Self-templating synthesis of silicon nanorods from nature sepiolite for high-performance lithium-ion battery anodes[J]. Journal of Materials Chemistry A, 2018, 6(10): 6356-6362. https://pubs.rsc.org/en/Content/ArticleLanding/TA/2018/C8TA00587G
|
[2] |
彭弯弯, 徐唱, 李之锋, 等.面密度和压实密度对锂离子电池快充性能的影响[J].有色金属科学与工程, 2017, 8(3): 21-25. http://www.xml-data.org/YSJSYKXGC/html/2017030011.htm
|
[3] |
陈军, 梅文捷, 曾敏, 等.羧基取代镍酞菁配合物的合成及其电化学性能研究[J].有色金属科学与工程, 2015, 6(5): 45-51. http://www.xml-data.org/YSJSYKXGC/html/201505009.htm
|
[4] |
吴怡芳, 白利锋, 王鹏飞, 等.锂离子电池正极材料研究[J].电源技术, 2019, 43(9): 1547-1550. doi: 10.3969/j.issn.1002-087X.2019.09.038
|
[5] |
廖春发, 郭守玉, 陈辉煌, 等.锂离子电池正极材料的制备研究现状[J].有色金属科学与工程, 2003, 4(2): 34-37. http://www.xml-data.org/YSJSYKXGC/html/200302012.htm
|
[6] |
WU H, CUI Y. Designing nanostructured Si anodes for high energy lithium-ion batteries[J]. Nano Today, 2012, 7(5): 414-429. doi: 10.1016/j.nantod.2012.08.004
|
[7] |
徐宝和, 吴甜甜, 钟盛文, 等. Si4+掺杂对富锂Li[Li0.15Mn0.575Ni0.275]1-xSixO2材料性能的影响[J].有色金属科学与工程, 2012, 3(2): 24-27. http://www.xml-data.org/YSJSYKXGC/html/201202006.htm
|
[8] |
LIU N, LU Z, ZHAO J, et al. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes[J]. Nature Nanotechnology, 2014, 9(4): 187-192. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ae7ade57c12249d3a0d3fd6b17ae84b7
|
[9] |
LIN L, XU X, CHU C, et al. Mesoporous amorphous silicon: a Simple synthesis of a high-Rate and long-life anode material for lithium-ion batteries[J]. Angewandte Chemie International Edition, 2016, 55(45): 14063-14066. doi: 10.1002/anie.201608146
|
[10] |
ZUO X, ZHU J, Müller-Buschbaum P, et al. Silicon based lithium-ion battery anodes: A chronicle perspective review[J]. Nano Energy, 2017, 31(11): 113-143. http://cn.bing.com/academic/profile?id=a238bac883d5390fc0402488897dd533&encoded=0&v=paper_preview&mkt=zh-cn
|
[11] |
LIU X H, ZHONG L, HUANG S, et al. Size-dependent fracture of silicon nanoparticles during lithiation[J]. ACS Nano, 2012, 6(2): 1522-1531. doi: 10.1021/nn204476h
|
[12] |
LI X, FAITH K B, JOHN K, et al. Study of lithium silicide nanoparticles as anode materials for advanced lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 19(9): 16071-16080. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5db34741651c95d6dd7dfa315d570302
|
[13] |
CHAN C K, PENG H, LIU G, et al. High-performance lithium battery anodes using silicon nanowires[J]. Nature Nanotechnology, 2008, 3(1): 31-35. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0221740412/
|
[14] |
WU H, CHAN G, CHOI J W, et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control[J]. Nature Nanotechnology, 2012, 7(5): 310-315. doi: 10.1038/nnano.2012.35
|
[15] |
LANG J L, BIN D, ZHANG S, et al. Scalable synthesis of 2D Si nanosheets[J]. Advanced Materials, 2017, 29(5): 1701-1707. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/adma.201701777
|
[16] |
HOU G, CHENG B, CAO Y, et al. Scalable production of 3D plum-pudding-like Si/C spheres: Towards practical application in Li-ion batteries[J]. Nano Energy, 2016, 24(8): 111-120. http://cn.bing.com/academic/profile?id=4aa3904c91325f3927b67cf4915bb3dd&encoded=0&v=paper_preview&mkt=zh-cn
|
[17] |
SU, J M, ZHANG C C, CHEN X, et al. Carbon-shell-constrained silicon cluster derived from Al-Si alloy as long-cycling life lithium-ion batteries anode[J]. Journal of Power Sources, 2018, 381(10): 66-71. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3f264851e6c893b7208fc6c1a1b4934b
|
[18] |
WANG X L, LI G, SEO M H, et al. Carbon-coated silicon nanowires on carbon fabric as self-supported electrodes for flexible lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(11): 9551-9558. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ca9adb4b00f5d1fb4b71777a32497701
|
[19] |
BAO Z H, WEATHERSPOON M R, SHIAN S, et al. Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas[J]. Nature, 2007, 446(7132): 172-175. doi: 10.1038/nature05570
|
[20] |
KIM S K, HWA Y, SHIN J H, et al. Scalable synthesis of silicon nanosheets from sand as an anode for Li-ion batteries[J]. Nanoscale, 2014, 6(1): 4297–4302. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b62284a0946537f25aae5933aefff90d
|
[21] |
CUI M, WANG L, GUO X, et al. Designing of hierarchical mesoporous/macroporous silicon-based composite anode material for low-cost high-performance lithium-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(1): 3874-3881. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ef089c3dbe030423b99dc855ba7ba6b1
|
[22] |
FAN X, YIN B, WU T, et al. Rice husk-based three-dimensional porous silicon/carbon nanocomposites as anode for lithium-ion batteries[J]. Energy Technology, 2019, 7(6): 2247-2250.
|
[23] |
ZHANG C, CAI X, CHEN W, et al. 3D Porous silicon/N-doped carbon composite derived from bamboo charcoal as high-performance anode material for lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 9930-9939. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=156a3ce1810f8958840d116590b06d35
|
[24] |
BRADLEY W F. The structural scheme of attapulgite[J]. American Mineralogist, 1940, 25(6): 405-410. http://cn.bing.com/academic/profile?id=78e8b89b01b4229164299fb9141d4c78&encoded=0&v=paper_preview&mkt=zh-cn
|
[25] |
谢超, 杜建国, 刘雷, 等.定量单轴压力下单晶硅片原位拉曼谱峰测试(英文)[J].光谱学与光谱分析, 2016, 36(4): 1261-1265. https://www.zhangqiaokeyan.com/academic-journal-cn_spectroscopy-spectral-analysis_thesis/0201232867647.html
|
[26] |
YOO J K, KIM J, CHOI M J, et al. Extremely high yield conversion from low-Cost sand to high-capacity Si electrodes for Li-ion batteries Adv[J]. Energy Mater, 2014(4): 1400622. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=80c6413e26a3b0fe9711271dae66a073
|
[27] |
XU C, LINDGREN F, PHILIPPE B, et al. Improved performance of the silicon anode for Li-ion batteries: Understanding the surface modification mechanism of fluoroethylene carbonate as an effective electrolyte additive[J]. Chemistry of Materials, 2015, 27(3): 2591-2599. http://cn.bing.com/academic/profile?id=918556c9d019acc6dfd8c596c6f9ef89&encoded=0&v=paper_preview&mkt=zh-cn
|
[28] |
PROFATILOVA I A, STOCK C, SCHMITZ A, et al. Enhanced thermal stability of a lithiated nano-silicon electrode by fluoroethylene carbonate and vinylene carbonate[J]. Journal of Power Sources, 2013, 222(13): 140-149. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dd672e40e52b982fc469616f63f15eae
|
[29] |
SHIMIZU M, USUI H, SUZUMURA T, et al. Analysis of the deterioration mechanism of Si electrode as a Li-ion battery anode using raman microspectroscopy[J]. Journal of Physical Chemistry C, 2015, 119(5): 2975-2982. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=74a65b654580f29e67c8b5360d0c3274
|
[30] |
CHAN M K Y, WOLVERTON C, GREELEY J P J, et al. First principles simulations of the electrochemical lithiation and delithiation of faceted crystalline silicon[J]. Journal of the American Chemical Society, 2012, 134(8): 14362-14374. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5d0cb632822d4d0d000886117790e3e3
|
[31] |
ZHANG C, YU R, ZHOU T, et al. Mass production of three-dimensional hierarchical microfibers constructed from silicon-carbon core-shell architectures with high-performance lithium storage[J]. Carbon, 2014, 72(9): 169-175. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0de80c634ff1ff7911fbddb27505d5ba
|
[32] |
YANG J, LIU J, ZHAO C, et al. Core-shell structured heterohierachical porous Si@graphene microsphere for high-performance lithium-ion battery anodes[J]. Materials Letters, 2020, 266(5): 127484-127488.
|
[33] |
QIU D F, MA X, ZHANG J D, et al. Mesoporous silicon microspheres produced from in-situ magnesiothermic reduction of silicon oxide for high-performance anode material in sodium-ion batteries[J]. Nanoscale Research Letters, 2018, 275(13): 2699-2706. http://cn.bing.com/academic/profile?id=2bdc04b04583a2de1006ddaa40decbb9&encoded=0&v=paper_preview&mkt=zh-cn
|
[1] | WANG Lu, FENG Tianyi, CUI Pengyuan, SHEN Qingfeng, LIN Yan, YU Xiaohua. Status of technological research on the separation and recovery of valuable metal ions in cathode materials from spent lithium-ion battery[J]. Nonferrous Metals Science and Engineering, 2023, 14(6): 791-801. DOI: 10.13264/j.cnki.ysjskx.2023.06.006 |
[2] | HUANG Jinchao, GUO Ziting, XIAO Qingmei, ZHONG Shengwen. Effect of binary composite conductive agent with graphene and carbon nanotube on performance of LiNi0.5Co0.2Mn0.3O2 lithium-ion battery[J]. Nonferrous Metals Science and Engineering, 2023, 14(3): 355-362. DOI: 10.13264/j.cnki.ysjskx.2023.03.008 |
[3] | ZHANG Ke, LIU Dongxue, WEN Min, YIN Yanhong. Modification of tungsten oxide as an anode electrode for lithium-ion batteries[J]. Nonferrous Metals Science and Engineering, 2022, 13(6): 74-83. DOI: 10.13264/j.cnki.ysjskx.2022.06.010 |
[4] | LI Rui, CHEN Yu, DING Nengwen, LI Zhifeng, LI Xiaocheng. Preparation and electrochemical performance of Lithium-ion battery negative electrode material PSi@GO[J]. Nonferrous Metals Science and Engineering, 2022, 13(5): 16-22. DOI: 10.13264/j.cnki.ysjskx.2022.05.003 |
[5] | ZHONG Caini, CHEN Zheqin, LU Yanhua, LIU Jiaming, XIA Shubiao. A study on the synthesis and electrochemical properties of CuFe2O4 cubes as anode material for lithium-ion batteries[J]. Nonferrous Metals Science and Engineering, 2020, 11(3): 59-64. DOI: 10.13264/j.cnki.ysjskx.2020.03.008 |
[6] | ZHAO Tianyu, SONG Yunfeng, LI Yongli, ZHAO Zhongwei, HE Lihua, CHEN Xingyu, LIU Xuheng. Recovery of lithium from leaching solution of anode materials in waste lithium-ion batteries by solvent extraction method[J]. Nonferrous Metals Science and Engineering, 2019, 10(1): 49-53. DOI: 10.13264/j.cnki.ysjskx.2019.01.008 |
[7] | PENG Wanwan, XU Chang, LI Zhifeng, FAN Fengsong, ZHANG Qian, WANG Chunxiang, ZHONG Shengwen. Effects of surface density and compaction density on properties of fast charge lithium ion battery[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 69-73. DOI: 10.13264/j.cnki.ysjskx.2017.03.011 |
[8] | LI Jin-hui, ZHENG Shun, XIONG Dao-ling, LI Ying, TANG Cong-lin, YANG Jin-xin. Methods for valuable resource recovery from cathode materials of spent lithium ion battery[J]. Nonferrous Metals Science and Engineering, 2013, 4(4): 29-35. DOI: 10.13264/j.cnki.ysjskx.2013.04.005 |
[9] | LIAO Chun-fa, CHEN Hui-huang, CHEN Zi-ping. Influence of Doping Rare Earth on the LiCoO2 as Lithium-ion Positive Material[J]. Nonferrous Metals Science and Engineering, 2004, 18(2): 33-37. |
[10] | LIAO Chun-fa, GUO Shou-yu, CHEN Hui-huang. Research Status on Cathode Materials of Li-ion Battery[J]. Nonferrous Metals Science and Engineering, 2003, 17(2): 34-37. |
1. |
郑娅,刘娟,喻强,穆艺臣,赵小玉,李小成. CO_2氧化多孔Mg_2Si制备微纳分级Si/C材料及储锂性能. 有色金属科学与工程. 2024(02): 256-264+273 .
![]() | |
2. |
李虎振,甄蒙蒙,胡振中. 超薄壁TiO_2(B)纳米管制备及其储锂性能研究. 河北工业大学学报. 2024(03): 58-64 .
![]() | |
3. |
云红红,解寅珑,白韡,白健美,张轩. 电力系统储能中的多孔碳电池材料及应用实验研究. 化学工程师. 2023(09): 94-99 .
![]() | |
4. |
李芮,陈煜,丁能文,李之锋,李小成. 锂离子电池负极材料PSi@GO的制备及其电化学性能. 有色金属科学与工程. 2022(05): 16-22 .
![]() | |
5. |
刘晓娴,郑娅,刘娟,喻强,李小成,韩峰,王剑秋. 部分炭化策略制备Si@C材料及其储锂性能研究. 有色金属科学与工程. 2022(06): 50-57 .
![]() | |
6. |
张克,刘冬雪,文敏,尹艳红. 锂离子电池用氧化钨负极材料的改性. 有色金属科学与工程. 2022(06): 74-83 .
![]() | |
7. |
汪若冰. 基于双模板法钠离子电池三维碳基负极复合材料的制备和性能. 廊坊师范学院学报(自然科学版). 2021(02): 35-38 .
![]() | |
8. |
籍向东,王勇,詹欢,潘春艳,岳国仁,曹成. 载硫酸高铈凹凸棒石的制备及其性能研究. 当代化工. 2021(06): 1280-1283 .
![]() | |
9. |
文敏,徐子其,张克,李轩,胡君辉,罗虹,尹艳红. 氧化钨/碳纳米管膜复合负极的制备及其储锂性能. 有色金属科学与工程. 2021(04): 58-65 .
![]() | |
10. |
尚志同,戴儇,刘彬,喻强,李小成. 多孔硅@石墨烯-碳纳米管的制备及性能研究. 电源技术. 2021(12): 1533-1536+1557 .
![]() | |
11. |
张学硕,屈银虎,左文婧,高浩斐,王钰凡,张红. 3D打印锂离子电池硅负极的改性及制备. 西安工程大学学报. 2020(06): 52-58 .
![]() |