Citation: | ZHANG Ke, LIU Dongxue, WEN Min, YIN Yanhong. Modification of tungsten oxide as an anode electrode for lithium-ion batteries[J]. Nonferrous Metals Science and Engineering, 2022, 13(6): 74-83. DOI: 10.13264/j.cnki.ysjskx.2022.06.010 |
[1] |
赵超男, 张文齐, 杨建铖, 等. 凹凸棒制备Si@C复合材料及其用于锂离子电池负极材料的电化学性能[J]. 有色金属科学与工程, 2020, 11(3) : 52-58. doi: 10.13264/j.cnki.ysjskx.2020.03.007
|
[2] |
白明华, 刘锐, 于湛, 等. 水热法合成氧化钨及其电化学性能[J]. 沈阳师范大学学报(自然科学版) 2018, 36 (5): 385-390. doi: 10.3969/j.issn.1673-5862.2018.05.001
|
[3] |
YU S, LEE S, LEE D, et al. Conversion reaction-based oxide nanomaterials for lithium- ion battery anodes[J]. Small, 2015, 12 (16): 2146-2172.
|
[4] |
尹艳红, 吴子平, 赵曼, 等. 超细氧化钨的制备及其光催化性能研究[J]. 有色金属科学与工程, 2014, 5(3): 50-55. https://www.cnki.com.cn/Article/CJFDTOTAL-JXYS201403010.htm
|
[5] |
WANG H, XIN H, CAI C, et al. Selective C3-C4 keto-alcohols production from cellulose hydrogenolysis over Ni-WOx /C catalysts[J]. ACS Catalysis, 2020, 10 (18): 10646-10660. doi: 10.1021/acscatal.0c02375
|
[6] |
WU Z, WANG Y, LIU X, et al. Carbon nanomaterial based flexible batteries for wearable electronics[J]. Advanced Materials, 2019, 31 (9): 1-25.
|
[7] |
WANG Y, CHEN C, XIE H, et al. 3D-printed all fiber li-ion battery toward wearable energy storage[J]. Advanced Functional Materials, 2017(1703140): 1-8.
|
[8] |
LI W, FU Z. Nanostructured WO3 thin film as a new anode material for lithium-ion batteries[J]. Applied Surface Science, 2010, 256 (8): 2447-2452. doi: 10.1016/j.apsusc.2009.10.085
|
[9] |
HERDT T, DECKENBACH D, BRUNS M, et al. Tungsten oxide nanorod architectures as 3D anodes in binder free lithium-ion batteries[J]. Nanoscale, 2019(11): 598-610.
|
[10] |
ZHENG M, TANG H, HU Q, et al. Tungsten-based materials for lithium-ion Batteries[J]. Advanced Functional Materials, 2018, (1707500): 1-26.
|
[11] |
YU M, SUN H, SUN X, et al. 3D WO3 nanowires/graphene nanocomposite with improved reversible capacity and cyclic stability for lithium-ion batteries[J]. Materials Letters, 2013 (108): 29-32.
|
[12] |
ZHENG F, SONG S, LU F, et al. Hydrothermal preparation, growth mechanism and supercapacitive properties of WO3 nanorod arrays grown directly on Cu substrate[J]. Cryst Eng Comm, 2016, 18 (21): 3891-3904. doi: 10.1039/C6CE00316H
|
[13] |
SEONG C, PRAGATI A. Review on recent progress in the development of tungsten oxide based electrodes for electrochemical energy storage[J]. Chem Sus Chem, 2020, 13(1): 11-38. doi: 10.1002/cssc.201902071
|
[14] |
BEKAREVICH R, PIHOSH Y, TANAKA Y, et al. Conversion reaction in the binder-free anode for fast-charging Li-ion batteries based on WO3-nanorodes[J]. ACS Applied Energy Materials, 2020, 3 (7): 6700-6708. doi: 10.1021/acsaem.0c00844
|
[15] |
阙小奇. 基于碳包覆复合结构的锂离子电池负极材料的制备及其电化学性能[D]. 哈尔滨: 哈尔滨工业大学, 2019: 1-66.
|
[16] |
赵林艳, 席晓丽, 樊佑书, 等. 纳米氧化钨的水热/溶剂热法制备及应用的综述[J]. 材料导报, 2019, 33 (190): 3203-3209. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201919006.htm
|
[17] |
LIU R, GUO R, ZHU H, et al. A novel propeller-like Si@WO3@C with boosted electrochemical properties as anode material for lithium-ion batteries[J]. Vacuum, 2020(109922): 1-5.
|
[18] |
BEKAREVICH R, PIHOSH Y, TANAKA Y, et al. Conversion reaction in the binder-free anode for fast-charging Li-ion batteries based on WO3 nanorods[J]. ACS Applied Energy Materials, 2020(3): 700-708.
|
[19] |
XIAO Y, JIANG M, CAO M, et al. Developing WO3 as high-performance anode material for lithium-ion batteries[J]. Materials Letters, 2020(4): 129-138.
|
[20] |
LIU X, XIAOZ, LAI C, et al. Three-dimensional carbon framework as high-proportion sulfur host for high-performance lithium-sulfur batteries[J]. Journal of Materials Science and Technology, 2020, 48 (1): 84-91.
|
[21] |
WANG Y, XIAO X, LI Q, et al. Synthesis and progress of new oxygen-vacant electrode materials for high-energy rechargeable battery applications[J]. Small, 2018, 14: 1802193.
|
[22] |
SHAO C, MALIK A, HAN J, et al. Oxygen vacancy engineering with flame heating approach towards enhanced photoelectrochemical water oxidation on WO3 photoanode[J]. Nano Energy, 2020, 77: 105190.
|
[23] |
DENG W, WANG Y, GUO W, et al. Universal layer-by-layer assembly of integrated electrode for high-rate lithium-ion batteries by carbon nanotube socks[J]. Carbon, 2021(178): 573-580.
|
[24] |
ZHANG W, YUE L, ZHANG F, et al. One-step in situ synthesis of ulthathin tungsten oxide@carbon nanowire webs as an anode material for high performance[J]. Journal of Materials Chemistry A, 2015(4): 129-139.
|
[25] |
LI X, GUO S, HU X, et al. Bifunctional N-Doped tungsten trioxide microspheres as electrode materials for lithium-ion batteries and direct methanol fuel cells[J]. Journal of Physical Chemistry C, 2020, (124): 261-267.
|
[26] |
MIN S, EUNHO L, SEONGBEEN K, et al. General synthesis of N-doped macroporous graphene encapsulated mesoporous metal oxides and their application as new anode materials for sodium-ion hybrid supercapacitors[J]. Advanced Functional Materials, 2017(27): 267-277.
|
[27] |
MU K, LIU K, WANG Z, et al. An electrolyte-phobic carbon nanotube current collector for high-voltage foldable lithium-ion batteries[J]. Journal of Materials Chemistry A, 2020(8): 444-453.
|
[28] |
TIM H, DANIEL D, BRUNS M, et al. Tungsten oxide nanorod architectures as 3D anodes in binder-free lithium-ion batteries[J]. Nanoscale, 2019(10): 598-610.
|
[29] |
MANNICKAN S, NANDA G, YOSHIO, et al. WO3 hollow nanospheres for high-lithium storage capacity and good cyclability[J]. Nano Energy, 2012(23): 2211-2855.
|
[30] |
BAO K, MAO W, LIU G, et al. Preparation and electrochemical characterization of ultrathin WO3-x/C nanosheets as anode materials in lithium-ion batteries[J]. Nano Research, 2017(6): 1903-1911.
|
[31] |
JOHANNES K, LUCAS H, SANDRO S, et al. Enhanced performance and lifetime of lithium-ion batteries by laser structuring of graphite anodes[J]. Applied Energy, 2021(303): 117693.
|
[32] |
LU Y, HAN X, CHU Z, et al. A decomposed electrode model for real-time anode potential observation of lithium-ion batteries[J]. Journal of Power Sources, 2021(513): 230-248.
|
[33] |
HU Y J, YIN Y H, ZHANG M, et al. In-situ Growth of Carbon Nanosheets Intercalated with TiO2 for Improving Electrochemical Performance and Stability of Lithium-ion Batteries[J]. Chinese Journal of Structural Chemistry, 2021, 11(40): 1513-1524.
|
[34] |
AUGUSTYN V, COME J, LOWE M A, et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance[J]. Nat Mater, 2013(12): 518-522.
|
[35] |
WANG Q, WU X, YOU H, et al. Template-directed prussian blue nanocubes supported on Ni foam as the binder-free anode of lithium-ion batteries[J]. Applied Surface Science, 2022(571): 30-48.
|
[36] |
ZHAO X, WANG P, ERfEIL V, et al. Screening MXenes for novel anode material of lithium-ion batteries with high capacity and stability: A DFT calculation[J]. Applied Surface Science, 2021(569): 48-67.
|
[37] |
TIAN M Y, BEN L B, JIN Z, et al. Electrochemical cycling of an anode consisting of Si nanoparticles seeded in Sn nanowires for lithium-ion batteries[J]. Electrochimica Acta, 2021(396): 57-64.
|
[38] |
AIHUA J, SUE I, JAEHUUK P, et al. Carbon nanotubes for high-performance lithium-ion battery anodes[J]. Journal of Alloys and Compounds, 2021(892): 136-147.
|
[1] | WANG Jun’an, ZHONG Shengwen, YUE Bo, HUANG Xiaoli, CHEN Wei, WEI Xingquan, ZENG Min, LIU Jingjing, WEN Guanjun. Preparation technology and properties of modified single-crystalline LiNi0.83Co0.12Mn0.05O2 cathode materials by doping and coating[J]. Nonferrous Metals Science and Engineering, 2023, 14(6): 808-815. DOI: 10.13264/j.cnki.ysjskx.2023.06.008 |
[2] | HUANG Jinchao, GUO Ziting, XIAO Qingmei, ZHONG Shengwen. Effect of binary composite conductive agent with graphene and carbon nanotube on performance of LiNi0.5Co0.2Mn0.3O2 lithium-ion battery[J]. Nonferrous Metals Science and Engineering, 2023, 14(3): 355-362. DOI: 10.13264/j.cnki.ysjskx.2023.03.008 |
[3] | WEN Min, XU Ziqi, ZHANG Ke, LI Xuan, HU Junhui, LUO Hong, YIN Yanhong. Preparation of tungsten oxide/carbon macrofilms composite anode electrode and lithium storage performance[J]. Nonferrous Metals Science and Engineering, 2021, 12(4): 58-65. DOI: 10.13264/j.cnki.ysjskx.2021.04.008 |
[4] | DU Ruian, MA Xiaoshuai, ZHANG Mengdi, CHEN Fanyun, YU Changlin. Synthesis of multi-walled carbon nanotubes/TiO2 composites and their photocatalytic performance[J]. Nonferrous Metals Science and Engineering, 2019, 10(5): 75-84. DOI: 10.13264/j.cnki.ysjskx.2019.05.012 |
[5] | WANG Yun, XIE Xiaohao, WANG Yanliang, CHEN Hao. Latest progress in the preparation of cemented carbide tool coatings[J]. Nonferrous Metals Science and Engineering, 2019, 10(1): 60-66. DOI: 10.13264/j.cnki.ysjskx.2019.01.010 |
[6] | SHAO Zekuan. The research status on coated tools[J]. Nonferrous Metals Science and Engineering, 2017, 8(6): 57-64. DOI: 10.13264/j.cnki.ysjskx.2017.06.009 |
[7] | YU Tianheng, XU Guofeng, LI Jianling. Electrochemical performance of Li-rich material Li[Li0.2Mn0.54Co0.13Ni0.13]O2 by ZrO2 coating[J]. Nonferrous Metals Science and Engineering, 2017, 8(1): 51-55. DOI: 10.13264/j.cnki.ysjskx.2017.01.009 |
[8] | ZHANG Qin-jian, ZHAO Lu-ming, LIU Min-zhi, YANG Xiao-qin. Research status and development trends of cutting tool coating technology[J]. Nonferrous Metals Science and Engineering, 2014, 5(2): 20-25. DOI: 10.13264/j.cnki.ysjskx.2014.02.004 |
[9] | CHEN Hao, YANG Jian-gao, LI Jin-hui, ZHANG Xue-hui, LYU Jian. Coating process conditions of W alloy electrodeposition[J]. Nonferrous Metals Science and Engineering, 2013, 4(5): 28-32. DOI: 10.13264/j.cnki.ysjskx.2013.05.006 |
[10] | YIN Yan-hong, WU Zi-ping, YANG Jian-gao. TunPreparation of high efficient photocatalyst carbon nanotubes/tungsten oxide nanorods assisted by ultrasonic field[J]. Nonferrous Metals Science and Engineering, 2012, 3(5): 39-44. DOI: 10.13264/j.cnki.ysjskx.2012.05.010 |
1. |
付莉莉,闵永安. 热作模具钢线材的材质分析. 上海金属. 2022(02): 24-31 .
![]() | |
2. |
巨银军,吕子宇,邢立东,王敏,包燕平. 20CrMnTiH冶炼全流程夹杂物演变分析. 有色金属科学与工程. 2022(04): 20-27 .
![]() |