Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
TIAN Changshun, RAO Yunzhang, XU Wei, XIANG Cairong, MA Shi, YUAN Boyun. Mechanism analysis of explosion reaction process of metal sulfide ore dust[J]. Nonferrous Metals Science and Engineering, 2020, 11(6): 78-84. DOI: 10.13264/j.cnki.ysjskx.2020.06.011
Citation: TIAN Changshun, RAO Yunzhang, XU Wei, XIANG Cairong, MA Shi, YUAN Boyun. Mechanism analysis of explosion reaction process of metal sulfide ore dust[J]. Nonferrous Metals Science and Engineering, 2020, 11(6): 78-84. DOI: 10.13264/j.cnki.ysjskx.2020.06.011

Mechanism analysis of explosion reaction process of metal sulfide ore dust

More Information
  • Received Date: August 03, 2020
  • Published Date: December 30, 2020
  • The mechanism of explosion reaction process needs to be clarified due to the danger of dust explosion in metal sulfide mines. The thermal reaction process of metal sulfide ore dust was understood through the numerical simulation of Factsage software. The pyrolysis products are calculated semi-quantitatively. The accuracy of thermogravimetric analysis results of metal sulfide ore dust is verified. The phases of metal sulfide ore dust before and after reaction in a 20 L spherical explosion container were analyzed by X-ray powder diffractometer. On the basis of the thermogravimetric analysis, phase analysis and the theory of heterogeneous combustion of particles in gas phase and surface, the mechanism model of shrinking core-diffusion limited volatiles explosion model (SC-DLVC model for short) explosion reaction process was established. The control equations and theoretical models of dust explosion dynamics at present are summarized, and the equations suitable for the mechanism model of dust explosion reaction process of metal sulfide ore are obtained, and the future correction direction is put forward. The research results can provide theoretical basis for studying computational fluid dynamics of dust explosion in metal sulfide mines, and also provide theoretical support for preventing dust explosion in metal sulfide mines.
  • [1]
    徐文庆, 陈志, 黄莹, 等.密闭空间中甘薯粉爆炸特性的试验研究[J].安全与环境学报, 2011, 11(5): 158-161. doi: 10.3969/j.issn.1009-6094.2011.05.034
    [2]
    FU S H, LOU W Z, WANG H J, et al. Evaluating the effects of aluminum dust concentration on explosions in a 20 L spherical vessel using ultrasonic sensors[J]. Powder Technology, 2020, 367: 809-819. doi: 10.1016/j.powtec.2020.02.015
    [3]
    KUAI N S, LI J M, CHEN Z, et al. Experiment-based investigations of magnesium dust explosion characteristics[J]. Journal of Loss Prevention in the Process Industries, 2011, 24(4): 302-313. doi: 10.1016/j.jlp.2011.01.006
    [4]
    张小良, 张志凯, 沈倩, 等.聚酰胺纤维粉尘的爆炸特性[J].中国粉体技术, 2016, 22(3): 22-26. https://www.cnki.com.cn/Article/CJFDTOTAL-FTJS201603006.htm
    [5]
    陈先锋, 张洪铭, 陈曦, 等.小麦淀粉粉尘云火焰传播特性研究[J].中国安全科学学报, 2016, 26(12): 53-57. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201612013.htm
    [6]
    LIU A H, CHEN J Y, HUANG X F, et al. Explosion parameters and combustion kinetics of biomass dust[J]. Bioresource Technology, 2019, 294: 1-8. http://www.sciencedirect.com/science/article/pii/S0960852419313987
    [7]
    YU Y Q, FAN J C. Research on explosion characteristics of sulfur dust and risk control of the explosion[J]. Procedia Engineering, 2014, 84: 449-459. doi: 10.1016/j.proeng.2014.10.455
    [8]
    TAN B, SHAO Z Z, XU B, et al. Analysis of explosion pressure and residual gas characteristics of micro-nano coal dust in confined space[J]. Journal of Loss Prevention in the Process Industries, 2020, 64: 1-7. http://www.sciencedirect.com/science/article/pii/S0950423019305418
    [9]
    陈国芳, 谭熙通, 支学艺, 等.基于Ventsim系统的矿山多中段通风系统改造研究[J].有色金属科学与工程, 2019, 10(4): 94-99. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201904015
    [10]
    吴超.金属矿山的安全与环境科技发展问题研究[J].有色金属科学与工程, 2012, 3(5): 1-7. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201205001
    [11]
    田长顺, 饶运章, 许威, 等.金属硫化矿尘爆炸研究进展[J].金属矿山, 2020(4): 178-185. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS202004029.htm
    [12]
    SOUNDARARAJA R, AMYOTTE P R, PEGG M J. Explosibility hazard of iron sulphide dusts as a function of particle size[J]. Journal of Hazardous Materials, 1996, 51: 225-239. doi: 10.1016/S0304-3894(96)01825-0
    [13]
    RAO Y Z, TIAN C S, XU W, et al. Explosion pressure and minimum explosible concentration properties of metal sulfide ore dust clouds[J]. Journal of Chemistry, 2020, 2020: 1-12. http://www.researchgate.net/publication/338945738_Explosion_Pressure_and_Minimum_Explosible_Concentration_Properties_of_Metal_Sulfide_Ore_Dust_Clouds
    [14]
    饶运章, 刘志军, 洪训明, 等.含硫量对硫化矿粉尘云最小点火能的影响[J].金属矿山, 2018(4): 173-177. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201804032.htm
    [15]
    孙翔, 饶运章, 李闯, 等.硫化矿尘云最低着火温度试验研究[J].金属矿山, 2017(6): 175-179. doi: 10.3969/j.issn.1001-1250.2017.06.035
    [16]
    SARLI V D, DANZI E, MARMO L, et al. CFD simulation of turbulent flow feld, feeding and dispersion of non-spherical dust particles in the standard 20 L sphere[J]. Journal of Loss Prevention in the Process Industries, 2019, 62: 1-9. http://www.researchgate.net/publication/336502358_CFD_simulation_of_turbulent_flow_field_feeding_and_dispersion_of_non-spherical_dust_particles_in_the_standard_20_L_sphere
    [17]
    LI H T, DENG J, SHU C M, et al. Flame behaviours and deflagration severities of aluminium powder-air mixture in a 20 L sphere: Computational fluid dynamics modelling and experimental validation[J]. Fuel, 2020, 276: 1-15. http://www.researchgate.net/publication/341152085_Flame_behaviours_and_deflagration_severities_of_aluminium_powder-air_mixture_in_a_20-L_sphere_Computational_fluid_dynamics_modelling_and_experimental_validation
    [18]
    马师.硫化矿尘热分解动力学及其爆温计算研究[D].赣州: 江西理工大学, 2017.
    [19]
    刘振海, 徐国华, 张洪林, 等.热分析与量热仪及其应用[M]. 2版, 北京:化学工业出版社, 2012.
    [20]
    MÜSELLIM E, TAHIR M H, AHMAD M S, et al. Thermokinetic and TG/DSC-FTIR study of pea waste biomass pyrolysis[J]. Applied Thermal Engineering, 2018, 137: 54-61. doi: 10.1016/j.applthermaleng.2018.03.050
    [21]
    张廷安, 豆志河.宏观动力学研究方法[M].北京:化学工业出版社, 2014.
    [22]
    LV W Z, YU D X, WU J Q, et al. The chemical role of CO2 in pyrite thermal decomposition[J]. Proceedings of the Combustion Institute, 2015, 359(3): 3637-3644. http://www.sciencedirect.com/science/article/pii/S1540748914002247
    [23]
    冯志力, 余永富, 刘根凡, 等.菱铁矿在氮气中的热分解动力学研究[J].武汉理工大学学报, 2009, 31(17): 11-14. doi: 10.3963/j.issn.1671-4431.2009.17.004
    [24]
    史亚丹, 陈天虎, 李平, 等.氮气气氛下黄铁矿热分解的矿物相变研究[J].高校地质学报, 2015, 21(4): 577-583. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201504001.htm
    [25]
    曹战民, 宋晓艳, 乔芝郁.热力学模拟计算软件FactSage及其应用[J].稀有金属, 2008, 32(2): 216-219. doi: 10.3969/j.issn.0258-7076.2008.02.019
    [26]
    周玲妹, 郭豪, 初茉, 等.低阶煤中镉的赋存对其在热解中释放的影响[J].煤炭学报, 2019, 44(1): 323-331. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201901033.htm
    [27]
    胡海燕, 胡立双, 武学.惰性粉尘对铝镁混合粉尘云最低点燃温度的影响[J].工业安全与环保, 2016, 42(8): 35-38. https://www.cnki.com.cn/Article/CJFDTOTAL-GYAF201608010.htm
    [28]
    霍然, 杨振宏, 柳静献.火灾爆炸预防控制工程学[M].北京:机械工业出版社, 2007.
    [29]
    GILLIES A D S, YAO Y S, GOLLEDGE P. The "pyrite method" as a new approach to determining sulphide ore dust explosion propensity[C]// Proceedings Sixth International Mine Ventilation Congress, Society of Mining Engineers, 1997, 1-8.
    [30]
    魏吴晋.铝纳米粉尘爆炸及其抑制技术研究[D].徐州: 中国矿业大学, 2010.
    [31]
    丁浩青, 温小萍, 邓浩鑫, 等.障碍物条件下纳米SiO2粉体抑制瓦斯爆炸特性[J].安全与环境学报, 2017, 17(3): 958-962. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201703030.htm
    [32]
    YANG F Q, WU C, CUI Y, et al. Apparent activation energy for spontaneous combustion of sulfide concentrates in storage yard[J]. Transactions Nonferrous Metals Society China, 2011, 21: 395-401.
    [33]
    喻孜, 胡涛平, 郭露, 等.不同木粉浓度下爆炸压力的动力学理论模拟[J].林产工业, 2019, 46(5): 7-11. https://www.cnki.com.cn/Article/CJFDTOTAL-LCGY201905002.htm
    [34]
    何琰儒, 朱顺兵, 李明鑫, 等.煤粉粒径对粉尘爆炸影响试验研究与数值模拟[J].中国安全科学学报, 2017, 27(1): 53-58. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201701010.htm
    [35]
    洪滔, 秦承森.爆轰波管中铝粉尘爆轰的数值模拟[J].爆炸与冲击, 2004, 24(3): 193-200. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ200403001.htm
    [36]
    饶运章.硫化矿尘爆炸机理研究及防治技术[M].长沙:中南大学出版社, 2018.
  • Related Articles

    [1]FAN Wenxin, GAO Yang, WANG Pengfei, CHEN Yan, YUAN Xia, PENG Lijun, FU Yabo, ZHANG Zhongtao. Effect of Ni and Si additions on the microstructure and mechanical properties of Cu-7Sn alloy[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 85-95. DOI: 10.13264/j.cnki.ysjskx.2025.01.010
    [2]CHEN Wenfei, OUYANG Shaobo, LAN Yuan, XIONG Daoling, MA Chongchong, YANG Jiaqi, ZOU Laixi, SHU Qing. Experiment on the swelling properties and semi-coke thermogravimetric analysis of waste tires[J]. Nonferrous Metals Science and Engineering, 2018, 9(6): 31-37. DOI: 10.13264/j.cnki.ysjskx.2018.06.005
    [3]HU Min, CHEN Min, LUO Yan, LIU Xiaoqiu. Effect of thermal spray coatings of WC-Co on the stress in jaw crusher tooth plate[J]. Nonferrous Metals Science and Engineering, 2016, 7(6): 83-87. DOI: 10.13264/j.cnki.ysjskx.2016.06.0014
    [4]ZHANG Lina, YUAN Zhangfu, LI Linshan, WU Yan, SUI Dianpeng. Model research of thermal decomposition kinetics of limestone[J]. Nonferrous Metals Science and Engineering, 2016, 7(6): 13-18. DOI: 10.13264/j.cnki.ysjskx.2016.06.003
    [5]DUAN Shengchao, MA Jianjun, GUO Hanjie, SHI Xiao, MAO Yu. Thermodynamic analysis and kinetics mechanism for direct nitridation reaction[J]. Nonferrous Metals Science and Engineering, 2016, 7(4): 14-21. DOI: 10.13264/j.cnki.ysjskx.2016.04.003
    [6]RAO Yunzhang, ZHANG Xueyan. Based on logistic regression model to determine the weight fuzzy comprehensive evaluation method in the application of the slope stability analysis[J]. Nonferrous Metals Science and Engineering, 2015, 6(6): 111-115. DOI: 10.13264/j.cnki.ysjskx.2015.06.020
    [7]LEI Facheng, ZHAO Yuncai. Feasibility analysis of selecting gearbox bearings indenter based on ANSYS[J]. Nonferrous Metals Science and Engineering, 2015, 6(1): 116-120. DOI: 10.13264/j.cnki.ysjskx.2015.01.022
    [8]LIAO Lile, GUO Xueyi, WANG Qinmeng, TIAN Qinghua, ZHANG Yongzhu. Performance analysis of oxygen bottom blowing copper smelting process using METSIM[J]. Nonferrous Metals Science and Engineering, 2014, 5(5): 49-55. DOI: 10.13264/j.cnki.ysjskx.2014.05.009
    [9]XIONG Li, YE Xue-jun, HU Cheng, LIU Zi-shuai, QIU Zhen-zhong. Sorting effects and mechanism of SA-3 on copper bismuth sulphide[J]. Nonferrous Metals Science and Engineering, 2011, 2(6): 83-85.
    [10]ZHAO Yun-cai, LEI Fa-cheng. Strength Analysis of Ceramic Filter's Rotary Vacuum Based on ANSYS[J]. Nonferrous Metals Science and Engineering, 2009, 23(3): 42-45.
  • Cited by

    Periodical cited type(8)

    1. 邓越,王婷婷,孙清鹏,孙金峰,张少飞. 三维阵列CoO_x/CeO_2双功能催化剂的制备及其电解水性能研究. 铜业工程. 2025(01): 95-103 .
    2. 薛天雨,黄仲,谷昊辉,张海军. 高熵合金纳米电催化剂的合成. 稀有金属. 2024(01): 90-104 .
    3. 裴启飞,郭孟伟,邵伟春,王恩泽,高明远,张启波. 锌电积体系Zn-MnO_2同槽电解电化学分析. 有色金属科学与工程. 2024(03): 322-331 . 本站查看
    4. 于巧玲,刘成宝,曹一达,郑磊之,陈丰,钱君超,邱永斌,孟宪荣,陈志刚. SnO_2QDs-g-C_3N_4/C的合成及其光催化降解四环素研究. 稀有金属. 2024(08): 1144-1153 .
    5. 朱得智,徐京城. FeS@NiMoO_4异质结构筑及电催化析氢性能研究. 有色金属材料与工程. 2024(06): 60-67+74 .
    6. 侯振宇,苑慧萍,刘彧儒,沈浩,李志念,蒋利军. 化学计量比对钇-镍基储氢合金结构和储氢性能的影响. 稀有金属. 2024(12): 1671-1680 .
    7. 余德和,左川,高勇,周世平,卢军,刘锋. 电解水析氢贵金属电催化剂的研究进展. 稀有金属. 2023(11): 1573-1586 .
    8. 王诗雯,鲁杨帆,丁朝,李建波,陈玉安,谭军. Ti基催化剂改性Mg基储氢材料的研究进展. 稀有金属. 2023(12): 1642-1656 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (146) PDF downloads (7) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return