Citation: | TIAN Changshun, RAO Yunzhang, XU Wei, XIANG Cairong, MA Shi, YUAN Boyun. Mechanism analysis of explosion reaction process of metal sulfide ore dust[J]. Nonferrous Metals Science and Engineering, 2020, 11(6): 78-84. DOI: 10.13264/j.cnki.ysjskx.2020.06.011 |
[1] |
徐文庆, 陈志, 黄莹, 等.密闭空间中甘薯粉爆炸特性的试验研究[J].安全与环境学报, 2011, 11(5): 158-161. doi: 10.3969/j.issn.1009-6094.2011.05.034
|
[2] |
FU S H, LOU W Z, WANG H J, et al. Evaluating the effects of aluminum dust concentration on explosions in a 20 L spherical vessel using ultrasonic sensors[J]. Powder Technology, 2020, 367: 809-819. doi: 10.1016/j.powtec.2020.02.015
|
[3] |
KUAI N S, LI J M, CHEN Z, et al. Experiment-based investigations of magnesium dust explosion characteristics[J]. Journal of Loss Prevention in the Process Industries, 2011, 24(4): 302-313. doi: 10.1016/j.jlp.2011.01.006
|
[4] |
张小良, 张志凯, 沈倩, 等.聚酰胺纤维粉尘的爆炸特性[J].中国粉体技术, 2016, 22(3): 22-26. https://www.cnki.com.cn/Article/CJFDTOTAL-FTJS201603006.htm
|
[5] |
陈先锋, 张洪铭, 陈曦, 等.小麦淀粉粉尘云火焰传播特性研究[J].中国安全科学学报, 2016, 26(12): 53-57. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201612013.htm
|
[6] |
LIU A H, CHEN J Y, HUANG X F, et al. Explosion parameters and combustion kinetics of biomass dust[J]. Bioresource Technology, 2019, 294: 1-8. http://www.sciencedirect.com/science/article/pii/S0960852419313987
|
[7] |
YU Y Q, FAN J C. Research on explosion characteristics of sulfur dust and risk control of the explosion[J]. Procedia Engineering, 2014, 84: 449-459. doi: 10.1016/j.proeng.2014.10.455
|
[8] |
TAN B, SHAO Z Z, XU B, et al. Analysis of explosion pressure and residual gas characteristics of micro-nano coal dust in confined space[J]. Journal of Loss Prevention in the Process Industries, 2020, 64: 1-7. http://www.sciencedirect.com/science/article/pii/S0950423019305418
|
[9] |
陈国芳, 谭熙通, 支学艺, 等.基于Ventsim系统的矿山多中段通风系统改造研究[J].有色金属科学与工程, 2019, 10(4): 94-99. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201904015
|
[10] |
吴超.金属矿山的安全与环境科技发展问题研究[J].有色金属科学与工程, 2012, 3(5): 1-7. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201205001
|
[11] |
田长顺, 饶运章, 许威, 等.金属硫化矿尘爆炸研究进展[J].金属矿山, 2020(4): 178-185. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS202004029.htm
|
[12] |
SOUNDARARAJA R, AMYOTTE P R, PEGG M J. Explosibility hazard of iron sulphide dusts as a function of particle size[J]. Journal of Hazardous Materials, 1996, 51: 225-239. doi: 10.1016/S0304-3894(96)01825-0
|
[13] |
RAO Y Z, TIAN C S, XU W, et al. Explosion pressure and minimum explosible concentration properties of metal sulfide ore dust clouds[J]. Journal of Chemistry, 2020, 2020: 1-12. http://www.researchgate.net/publication/338945738_Explosion_Pressure_and_Minimum_Explosible_Concentration_Properties_of_Metal_Sulfide_Ore_Dust_Clouds
|
[14] |
饶运章, 刘志军, 洪训明, 等.含硫量对硫化矿粉尘云最小点火能的影响[J].金属矿山, 2018(4): 173-177. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201804032.htm
|
[15] |
孙翔, 饶运章, 李闯, 等.硫化矿尘云最低着火温度试验研究[J].金属矿山, 2017(6): 175-179. doi: 10.3969/j.issn.1001-1250.2017.06.035
|
[16] |
SARLI V D, DANZI E, MARMO L, et al. CFD simulation of turbulent flow feld, feeding and dispersion of non-spherical dust particles in the standard 20 L sphere[J]. Journal of Loss Prevention in the Process Industries, 2019, 62: 1-9. http://www.researchgate.net/publication/336502358_CFD_simulation_of_turbulent_flow_field_feeding_and_dispersion_of_non-spherical_dust_particles_in_the_standard_20_L_sphere
|
[17] |
LI H T, DENG J, SHU C M, et al. Flame behaviours and deflagration severities of aluminium powder-air mixture in a 20 L sphere: Computational fluid dynamics modelling and experimental validation[J]. Fuel, 2020, 276: 1-15. http://www.researchgate.net/publication/341152085_Flame_behaviours_and_deflagration_severities_of_aluminium_powder-air_mixture_in_a_20-L_sphere_Computational_fluid_dynamics_modelling_and_experimental_validation
|
[18] |
马师.硫化矿尘热分解动力学及其爆温计算研究[D].赣州: 江西理工大学, 2017.
|
[19] |
刘振海, 徐国华, 张洪林, 等.热分析与量热仪及其应用[M]. 2版, 北京:化学工业出版社, 2012.
|
[20] |
MÜSELLIM E, TAHIR M H, AHMAD M S, et al. Thermokinetic and TG/DSC-FTIR study of pea waste biomass pyrolysis[J]. Applied Thermal Engineering, 2018, 137: 54-61. doi: 10.1016/j.applthermaleng.2018.03.050
|
[21] |
张廷安, 豆志河.宏观动力学研究方法[M].北京:化学工业出版社, 2014.
|
[22] |
LV W Z, YU D X, WU J Q, et al. The chemical role of CO2 in pyrite thermal decomposition[J]. Proceedings of the Combustion Institute, 2015, 359(3): 3637-3644. http://www.sciencedirect.com/science/article/pii/S1540748914002247
|
[23] |
冯志力, 余永富, 刘根凡, 等.菱铁矿在氮气中的热分解动力学研究[J].武汉理工大学学报, 2009, 31(17): 11-14. doi: 10.3963/j.issn.1671-4431.2009.17.004
|
[24] |
史亚丹, 陈天虎, 李平, 等.氮气气氛下黄铁矿热分解的矿物相变研究[J].高校地质学报, 2015, 21(4): 577-583. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201504001.htm
|
[25] |
曹战民, 宋晓艳, 乔芝郁.热力学模拟计算软件FactSage及其应用[J].稀有金属, 2008, 32(2): 216-219. doi: 10.3969/j.issn.0258-7076.2008.02.019
|
[26] |
周玲妹, 郭豪, 初茉, 等.低阶煤中镉的赋存对其在热解中释放的影响[J].煤炭学报, 2019, 44(1): 323-331. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201901033.htm
|
[27] |
胡海燕, 胡立双, 武学.惰性粉尘对铝镁混合粉尘云最低点燃温度的影响[J].工业安全与环保, 2016, 42(8): 35-38. https://www.cnki.com.cn/Article/CJFDTOTAL-GYAF201608010.htm
|
[28] |
霍然, 杨振宏, 柳静献.火灾爆炸预防控制工程学[M].北京:机械工业出版社, 2007.
|
[29] |
GILLIES A D S, YAO Y S, GOLLEDGE P. The "pyrite method" as a new approach to determining sulphide ore dust explosion propensity[C]// Proceedings Sixth International Mine Ventilation Congress, Society of Mining Engineers, 1997, 1-8.
|
[30] |
魏吴晋.铝纳米粉尘爆炸及其抑制技术研究[D].徐州: 中国矿业大学, 2010.
|
[31] |
丁浩青, 温小萍, 邓浩鑫, 等.障碍物条件下纳米SiO2粉体抑制瓦斯爆炸特性[J].安全与环境学报, 2017, 17(3): 958-962. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201703030.htm
|
[32] |
YANG F Q, WU C, CUI Y, et al. Apparent activation energy for spontaneous combustion of sulfide concentrates in storage yard[J]. Transactions Nonferrous Metals Society China, 2011, 21: 395-401.
|
[33] |
喻孜, 胡涛平, 郭露, 等.不同木粉浓度下爆炸压力的动力学理论模拟[J].林产工业, 2019, 46(5): 7-11. https://www.cnki.com.cn/Article/CJFDTOTAL-LCGY201905002.htm
|
[34] |
何琰儒, 朱顺兵, 李明鑫, 等.煤粉粒径对粉尘爆炸影响试验研究与数值模拟[J].中国安全科学学报, 2017, 27(1): 53-58. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201701010.htm
|
[35] |
洪滔, 秦承森.爆轰波管中铝粉尘爆轰的数值模拟[J].爆炸与冲击, 2004, 24(3): 193-200. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ200403001.htm
|
[36] |
饶运章.硫化矿尘爆炸机理研究及防治技术[M].长沙:中南大学出版社, 2018.
|
[1] | FAN Wenxin, GAO Yang, WANG Pengfei, CHEN Yan, YUAN Xia, PENG Lijun, FU Yabo, ZHANG Zhongtao. Effect of Ni and Si additions on the microstructure and mechanical properties of Cu-7Sn alloy[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 85-95. DOI: 10.13264/j.cnki.ysjskx.2025.01.010 |
[2] | CHEN Wenfei, OUYANG Shaobo, LAN Yuan, XIONG Daoling, MA Chongchong, YANG Jiaqi, ZOU Laixi, SHU Qing. Experiment on the swelling properties and semi-coke thermogravimetric analysis of waste tires[J]. Nonferrous Metals Science and Engineering, 2018, 9(6): 31-37. DOI: 10.13264/j.cnki.ysjskx.2018.06.005 |
[3] | HU Min, CHEN Min, LUO Yan, LIU Xiaoqiu. Effect of thermal spray coatings of WC-Co on the stress in jaw crusher tooth plate[J]. Nonferrous Metals Science and Engineering, 2016, 7(6): 83-87. DOI: 10.13264/j.cnki.ysjskx.2016.06.0014 |
[4] | ZHANG Lina, YUAN Zhangfu, LI Linshan, WU Yan, SUI Dianpeng. Model research of thermal decomposition kinetics of limestone[J]. Nonferrous Metals Science and Engineering, 2016, 7(6): 13-18. DOI: 10.13264/j.cnki.ysjskx.2016.06.003 |
[5] | DUAN Shengchao, MA Jianjun, GUO Hanjie, SHI Xiao, MAO Yu. Thermodynamic analysis and kinetics mechanism for direct nitridation reaction[J]. Nonferrous Metals Science and Engineering, 2016, 7(4): 14-21. DOI: 10.13264/j.cnki.ysjskx.2016.04.003 |
[6] | RAO Yunzhang, ZHANG Xueyan. Based on logistic regression model to determine the weight fuzzy comprehensive evaluation method in the application of the slope stability analysis[J]. Nonferrous Metals Science and Engineering, 2015, 6(6): 111-115. DOI: 10.13264/j.cnki.ysjskx.2015.06.020 |
[7] | LEI Facheng, ZHAO Yuncai. Feasibility analysis of selecting gearbox bearings indenter based on ANSYS[J]. Nonferrous Metals Science and Engineering, 2015, 6(1): 116-120. DOI: 10.13264/j.cnki.ysjskx.2015.01.022 |
[8] | LIAO Lile, GUO Xueyi, WANG Qinmeng, TIAN Qinghua, ZHANG Yongzhu. Performance analysis of oxygen bottom blowing copper smelting process using METSIM[J]. Nonferrous Metals Science and Engineering, 2014, 5(5): 49-55. DOI: 10.13264/j.cnki.ysjskx.2014.05.009 |
[9] | XIONG Li, YE Xue-jun, HU Cheng, LIU Zi-shuai, QIU Zhen-zhong. Sorting effects and mechanism of SA-3 on copper bismuth sulphide[J]. Nonferrous Metals Science and Engineering, 2011, 2(6): 83-85. |
[10] | ZHAO Yun-cai, LEI Fa-cheng. Strength Analysis of Ceramic Filter's Rotary Vacuum Based on ANSYS[J]. Nonferrous Metals Science and Engineering, 2009, 23(3): 42-45. |
1. |
邓越,王婷婷,孙清鹏,孙金峰,张少飞. 三维阵列CoO_x/CeO_2双功能催化剂的制备及其电解水性能研究. 铜业工程. 2025(01): 95-103 .
![]() | |
2. |
薛天雨,黄仲,谷昊辉,张海军. 高熵合金纳米电催化剂的合成. 稀有金属. 2024(01): 90-104 .
![]() | |
3. |
裴启飞,郭孟伟,邵伟春,王恩泽,高明远,张启波. 锌电积体系Zn-MnO_2同槽电解电化学分析. 有色金属科学与工程. 2024(03): 322-331 .
![]() | |
4. |
于巧玲,刘成宝,曹一达,郑磊之,陈丰,钱君超,邱永斌,孟宪荣,陈志刚. SnO_2QDs-g-C_3N_4/C的合成及其光催化降解四环素研究. 稀有金属. 2024(08): 1144-1153 .
![]() | |
5. |
朱得智,徐京城. FeS@NiMoO_4异质结构筑及电催化析氢性能研究. 有色金属材料与工程. 2024(06): 60-67+74 .
![]() | |
6. |
侯振宇,苑慧萍,刘彧儒,沈浩,李志念,蒋利军. 化学计量比对钇-镍基储氢合金结构和储氢性能的影响. 稀有金属. 2024(12): 1671-1680 .
![]() | |
7. |
余德和,左川,高勇,周世平,卢军,刘锋. 电解水析氢贵金属电催化剂的研究进展. 稀有金属. 2023(11): 1573-1586 .
![]() | |
8. |
王诗雯,鲁杨帆,丁朝,李建波,陈玉安,谭军. Ti基催化剂改性Mg基储氢材料的研究进展. 稀有金属. 2023(12): 1642-1656 .
![]() |