Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
OUYANG Kun, DOU Zhihe, ZHANG Ting'an, LIU Yan. The desulfurization process of lead and zinc mixed concentrate with oxygen[J]. Nonferrous Metals Science and Engineering, 2020, 11(2): 1-6. DOI: 10.13264/j.cnki.ysjskx.2020.02.001
Citation: OUYANG Kun, DOU Zhihe, ZHANG Ting'an, LIU Yan. The desulfurization process of lead and zinc mixed concentrate with oxygen[J]. Nonferrous Metals Science and Engineering, 2020, 11(2): 1-6. DOI: 10.13264/j.cnki.ysjskx.2020.02.001

The desulfurization process of lead and zinc mixed concentrate with oxygen

More Information
  • Received Date: December 08, 2019
  • Published Date: April 29, 2020
  • Due to the high energy consumption and environmental problems of sinter-blast furnace process of lead and zinc mixed concentrates, the use of bath smelting process instead of sintering process have become an alternative choice. The static method and XRD technique were used to study the effects of O2 flow rate, temperature and burden composition on desulfurization of lead and zinc mixed concentrates as well as the phase change of molten slag. The research results show that the high temperature melt desulfurization of lead and zinc mixed concentrates has the advantages of short smelting time and high desulfurization rate. The increase of O2 flow rate and reaction temperature was beneficial to the desulfurization reaction of lead and zinc mixed concentrates. The desulfurization rate of lead and zinc mixed concentrates decreased with the increase of Fe/SiO2and CaO/SiO2 mass ratio. However, when experimental temperature reached at 1 400 ℃, the increasing CaO/SiO2 mass ratio was conducive to the desulfurization of lead and zinc mixed concentrates. The spinel phase (ZnxFe3-xO4+y) was formed and increased with the increase of Fe/SiO2 mass ratio, when experimental temperature was at 1 250 ℃.
  • [1]
    刘世友. QSL铅熔炼法的发展[J].湖南有色金属, 1992, 8(4): 235-237. http://www.cnki.com.cn/Article/CJFDTotal-HNYJ199204012.htm
    [2]
    宋光辉.瓦纽科夫法直接炼铅及其进展[J].湖南有色金属, 2004, 20(2): 21-23. doi: 10.3969/j.issn.1003-5540.2004.02.007
    [3]
    周敬元.株冶铅烧结低浓度SO2烟气的治理[J].有色冶炼, 2002(5): 37-39. doi: 10.3969/j.issn.1672-6103.2002.05.013
    [4]
    赵娜, 苏艳蓉, 尤翔宇.奥斯麦特富氧顶吹炼铅工艺技术改造及烟气净化除尘[J].有色金属科学与工程, 2019, 10(1): 92-97. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201901015
    [5]
    赵娜, 朱莉薇, 尤翔宇.富氧侧吹直接炼铅烟气特性及净化除尘[J].有色金属科学与工程, 2018, 9(5): 61-65. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201805011
    [6]
    王成彦, 陈永强.中国铅锌冶金技术状况及发展趋势:铅冶金[J].有色金属科学与工程, 2016, 7(6): 1-7. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=2016060001
    [7]
    YAZAwA A. Thermodynamic evaluations of extractive metallurgical processes[J]. Metallurgical and Materials Transactions B, 1979, 10B: 307-321. https://www.researchgate.net/publication/226893187_Thermodynamic_evaluations_of_extractive_metallurgical_processes
    [8]
    FISCHER P, MACZEK H. The Present status of development of the QSL-lead process[J]. Journal of Metals, 1985: 60-64. doi: 10.1007/BF03338031
    [9]
    RATH G, VLAJCIC T, METELMANN O. Lead smelting in a submerged arc furnace[J]. JOM, 1990, 42(6): 39-40. doi: 10.1007/BF03220975
    [10]
    CHEN L, YANG T Z, BIN S, et al. An efficient reactor for high-lead slag reduction process: oxygen-rich side blow furnace[J]. The Minerals, Metals & Materials Society, 2014, 66: 1664-1669. https://www.researchgate.net/publication/270103874_An_Efficient_reactor_for_high-lead_slag_reduction_process_Oxygen-rich_side_blow_furnace
    [11]
    MOUNSEY E N, ROBILIARD K R. Sulfide smelting using ausmelt technology[J]. JOM, 1994, 46: 58-60. doi: 10.1007/BF03220779
    [12]
    MATYAS A G, MACKEYP J. Metallurgy of the direct smelting of lead[J]. JOM, 1976: 10-15. https://www.researchgate.net/publication/292825143_METALLURGY_OF_THE_DIRECT_SMELTING_OF_LEAD
    [13]
    NERMES E O, TALONEN T T. Flash smelting of lead concentrates[J]. Journal of Metals, 1982: 55-56. https://www.researchgate.net/publication/287961761_Flash_Smelting_of_Lead_Concentrates
    [14]
    HOANG J, REUTER M A, MATUSEwICZ R, et al. Top submerged lance direct zinc smelting[J]. Minerals Engineering, 2009, 22: 742-751. doi: 10.1016/j.mineng.2008.12.014
    [15]
    ZHANG H w, SHI X Y, ZHANG B, et al. Reduction of molten copper slags with mixed CO-CH4-Ar gas[J]. Metallurgical and Materials Transactions B, 2014, 45B: 582-589. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a7d68264e62b9bff63535c904848bf27
    [16]
    丁鹏, 杨卫严, 江晓健.高铅渣侧吹还原熔炼过程中泡沫渣的行为研究[J].有色冶金设计与研究, 2018, 39(2): 9-11. doi: 10.3969/j.issn.1004-4345.2018.02.004
    [17]
    LV X M, LV X w, wANG L w, et al. Viscosity and structure evolution of the SiO2-MgO-FeO-CaO-Al2O3 slag in ferronickel smelting process from laterite[J]. Min. Metall.Sect. B-Metall, 2017, 53(2): 147-154. doi: 10.2298/JMMB150911002L
    [18]
    OUYANG K, DOU Z H, ZHANG T A, et al. Viscosities in PbO-ZnO-"FexO" -SiO2-CaO system for lead and zinc smelting slags[J]. Metall. Res. Technol, 2019, 116(606): 1-8. https://www.researchgate.net/publication/335445470_Viscosities_in_PbO_-_ZnO_-_Fe_x_O_-_SiO_2_-CaO_system_for_lead_and_zinc_smelting_slags
    [19]
    ZHANG H w, SUN F, SHI X Y, et al. The Viscous and conductivity behavior of melts containing iron oxide in the FeOt-SiO2-CaO-Cu2O system for copper smelting slags[J]. Metall. Mater. Trans. B, 2012, 43B: 383-397. https://www.researchgate.net/publication/257708874_The_Viscous_and_Conductivity_Behavior_of_Melts_Containing_Iron_Oxide_in_the_FeOt-SiO2-CaO-Cu2O_System_for_Copper_Smelting_Slags
    [20]
    YAN Z, LV X, ZHANG J, et al. Influence of MgO, Al2O3 and CaO/SiO2 on the viscosity of blast furnace type slag with high Al2O3 and 5 wt-% TiO2[J]. Can. Met. Quart, 2016, 55: 186-194. doi: 10.1080/00084433.2015.1126903
    [21]
    PARK H, PARK J Y, KIM G H, et al. Effect of TiO2 on the viscosity and slag structure in blast furnace type slags[J]. Steel Researcher International, 2012, 83(2): 150-156. doi: 10.1002/srin.201100249
  • Cited by

    Periodical cited type(4)

    1. 欧阳坤,苏飞,豆志河,刘永富. 高锌含量铅锌氧化渣直接还原试验研究. 中国有色冶金. 2024(03): 57-63 .
    2. 杨世亮,肖清泰,徐建新,王华. 有色金属熔池熔炼过程混沌流非线性强化研究进展综述. 昆明理工大学学报(自然科学版). 2024(04): 1-24 .
    3. 欧阳坤,豆志河. 高锌含量下ZnO-FeO-SiO_2-CaO-Al_2O_3渣系黏度研究. 中国有色冶金. 2023(06): 125-130 .
    4. 宋锦波,郗文龙,牛丽萍,刘素红. 铅精矿协同铅膏、铅玻璃吹氧熔炼脱硫试验研究. 中国有色冶金. 2022(06): 110-117 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (100) PDF downloads (10) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return