Citation: | OUYANG Kun, DOU Zhihe, ZHANG Ting'an, LIU Yan. The desulfurization process of lead and zinc mixed concentrate with oxygen[J]. Nonferrous Metals Science and Engineering, 2020, 11(2): 1-6. DOI: 10.13264/j.cnki.ysjskx.2020.02.001 |
[1] |
刘世友. QSL铅熔炼法的发展[J].湖南有色金属, 1992, 8(4): 235-237. http://www.cnki.com.cn/Article/CJFDTotal-HNYJ199204012.htm
|
[2] |
宋光辉.瓦纽科夫法直接炼铅及其进展[J].湖南有色金属, 2004, 20(2): 21-23. doi: 10.3969/j.issn.1003-5540.2004.02.007
|
[3] |
周敬元.株冶铅烧结低浓度SO2烟气的治理[J].有色冶炼, 2002(5): 37-39. doi: 10.3969/j.issn.1672-6103.2002.05.013
|
[4] |
赵娜, 苏艳蓉, 尤翔宇.奥斯麦特富氧顶吹炼铅工艺技术改造及烟气净化除尘[J].有色金属科学与工程, 2019, 10(1): 92-97. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201901015
|
[5] |
赵娜, 朱莉薇, 尤翔宇.富氧侧吹直接炼铅烟气特性及净化除尘[J].有色金属科学与工程, 2018, 9(5): 61-65. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201805011
|
[6] |
王成彦, 陈永强.中国铅锌冶金技术状况及发展趋势:铅冶金[J].有色金属科学与工程, 2016, 7(6): 1-7. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=2016060001
|
[7] |
YAZAwA A. Thermodynamic evaluations of extractive metallurgical processes[J]. Metallurgical and Materials Transactions B, 1979, 10B: 307-321. https://www.researchgate.net/publication/226893187_Thermodynamic_evaluations_of_extractive_metallurgical_processes
|
[8] |
FISCHER P, MACZEK H. The Present status of development of the QSL-lead process[J]. Journal of Metals, 1985: 60-64. doi: 10.1007/BF03338031
|
[9] |
RATH G, VLAJCIC T, METELMANN O. Lead smelting in a submerged arc furnace[J]. JOM, 1990, 42(6): 39-40. doi: 10.1007/BF03220975
|
[10] |
CHEN L, YANG T Z, BIN S, et al. An efficient reactor for high-lead slag reduction process: oxygen-rich side blow furnace[J]. The Minerals, Metals & Materials Society, 2014, 66: 1664-1669. https://www.researchgate.net/publication/270103874_An_Efficient_reactor_for_high-lead_slag_reduction_process_Oxygen-rich_side_blow_furnace
|
[11] |
MOUNSEY E N, ROBILIARD K R. Sulfide smelting using ausmelt technology[J]. JOM, 1994, 46: 58-60. doi: 10.1007/BF03220779
|
[12] |
MATYAS A G, MACKEYP J. Metallurgy of the direct smelting of lead[J]. JOM, 1976: 10-15. https://www.researchgate.net/publication/292825143_METALLURGY_OF_THE_DIRECT_SMELTING_OF_LEAD
|
[13] |
NERMES E O, TALONEN T T. Flash smelting of lead concentrates[J]. Journal of Metals, 1982: 55-56. https://www.researchgate.net/publication/287961761_Flash_Smelting_of_Lead_Concentrates
|
[14] |
HOANG J, REUTER M A, MATUSEwICZ R, et al. Top submerged lance direct zinc smelting[J]. Minerals Engineering, 2009, 22: 742-751. doi: 10.1016/j.mineng.2008.12.014
|
[15] |
ZHANG H w, SHI X Y, ZHANG B, et al. Reduction of molten copper slags with mixed CO-CH4-Ar gas[J]. Metallurgical and Materials Transactions B, 2014, 45B: 582-589. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a7d68264e62b9bff63535c904848bf27
|
[16] |
丁鹏, 杨卫严, 江晓健.高铅渣侧吹还原熔炼过程中泡沫渣的行为研究[J].有色冶金设计与研究, 2018, 39(2): 9-11. doi: 10.3969/j.issn.1004-4345.2018.02.004
|
[17] |
LV X M, LV X w, wANG L w, et al. Viscosity and structure evolution of the SiO2-MgO-FeO-CaO-Al2O3 slag in ferronickel smelting process from laterite[J]. Min. Metall.Sect. B-Metall, 2017, 53(2): 147-154. doi: 10.2298/JMMB150911002L
|
[18] |
OUYANG K, DOU Z H, ZHANG T A, et al. Viscosities in PbO-ZnO-"FexO" -SiO2-CaO system for lead and zinc smelting slags[J]. Metall. Res. Technol, 2019, 116(606): 1-8. https://www.researchgate.net/publication/335445470_Viscosities_in_PbO_-_ZnO_-_Fe_x_O_-_SiO_2_-CaO_system_for_lead_and_zinc_smelting_slags
|
[19] |
ZHANG H w, SUN F, SHI X Y, et al. The Viscous and conductivity behavior of melts containing iron oxide in the FeOt-SiO2-CaO-Cu2O system for copper smelting slags[J]. Metall. Mater. Trans. B, 2012, 43B: 383-397. https://www.researchgate.net/publication/257708874_The_Viscous_and_Conductivity_Behavior_of_Melts_Containing_Iron_Oxide_in_the_FeOt-SiO2-CaO-Cu2O_System_for_Copper_Smelting_Slags
|
[20] |
YAN Z, LV X, ZHANG J, et al. Influence of MgO, Al2O3 and CaO/SiO2 on the viscosity of blast furnace type slag with high Al2O3 and 5 wt-% TiO2[J]. Can. Met. Quart, 2016, 55: 186-194. doi: 10.1080/00084433.2015.1126903
|
[21] |
PARK H, PARK J Y, KIM G H, et al. Effect of TiO2 on the viscosity and slag structure in blast furnace type slags[J]. Steel Researcher International, 2012, 83(2): 150-156. doi: 10.1002/srin.201100249
|
[1] | YANG Bo, WANG Xiao, LONG Xianhao, XIE Xian. Research on the optimization of beneficiation processes for a lead-zinc ore from inner mongolia autonomous region[J]. Nonferrous Metals Science and Engineering, 2024, 15(6): 922-931. DOI: 10.13264/j.cnki.ysjskx.2024.06.015 |
[2] | WANG Fei, NIU Jiazhen, GUO Shengqi, WANG Junli, GUO Jing. Prediction study of desulfurization during the argon protective electroslag remelting process[J]. Nonferrous Metals Science and Engineering, 2024, 15(4): 487-496. DOI: 10.13264/j.cnki.ysjskx.2024.04.003 |
[3] | PENG Jinpeng, ZHAN Jiaxin, ZHANG Bin, WU Yikang, LI Mingzhou. Numerical simulation of multiphase flow in oxygen bottom-blowing copper melting furnance[J]. Nonferrous Metals Science and Engineering, 2023, 14(3): 318-328. DOI: 10.13264/j.cnki.ysjskx.2023.03.004 |
[4] | WANG Jiansong, QIN Jia, JING Tao, HUANG Tao, SHI Xinxin, CAO Zhanmin. Thermodynamic simulation and optimization of lead side blowing oxidation smelting process[J]. Nonferrous Metals Science and Engineering, 2020, 11(5): 7-15. DOI: 10.13264/j.cnki.ysjskx.2020.05.002 |
[5] | ZHAO Na, ZHU Liwei, YOU Xiangyu. The flue gas characteristics of oxygen-enriched side-blown direct lead smelting process and dust purification[J]. Nonferrous Metals Science and Engineering, 2018, 9(5): 61-65. DOI: 10.13264/j.cnki.ysjskx.2018.05.011 |
[6] | GUO Xueyi, WANG Songsong, WANG Qinmeng, TIAN Qinghua. Development and application of oxygen bottom blowing copper smelting simulation software SKSSIM[J]. Nonferrous Metals Science and Engineering, 2017, 8(4): 1-6. DOI: 10.13264/j.cnki.ysjskx.2017.04.001 |
[7] | YANG Zhiqiang, XIONG Liangfeng, FANG Lin, GAO Qian, TIAN Lipeng. Preparation of new filling cementing materials with sintering desulfurization ash[J]. Nonferrous Metals Science and Engineering, 2015, 6(1): 8-12. DOI: 10.13264/j.cnki.ysjskx.2015.01.002 |
[8] | LIAO Lile, GUO Xueyi, WANG Qinmeng, TIAN Qinghua, ZHANG Yongzhu. Performance analysis of oxygen bottom blowing copper smelting process using METSIM[J]. Nonferrous Metals Science and Engineering, 2014, 5(5): 49-55. DOI: 10.13264/j.cnki.ysjskx.2014.05.009 |
[9] | GUO Xueyi, WANG Qinmeng, LIAO Lile, TIAN Qinghua, ZHANG Yongzhu. Mechanism and multiphase interface behavior of copper sulfide concentrate smelting in oxygen-enriched bottom blowing furnace[J]. Nonferrous Metals Science and Engineering, 2014, 5(5): 28-34. DOI: 10.13264/j.cnki.ysjskx.2014.05.005 |
[10] | CHENG Li-guo, WU Yan-peng, ZHOU Tie-zhu. Desulfurizing Technology by Calcium and Sodium Double Alkali Method[J]. Nonferrous Metals Science and Engineering, 2011, 2(4): 16-20. |
1. |
马利国,孙艳荣,张志鹏,李琬,李永贤,韩广豪,肖大庆,李冬至. Pr-Dy-Cu-Ga合金晶界扩散烧结Nd-Fe-B磁体的性能研究. 稀有金属. 2025(01): 80-90 .
![]() | |
2. |
刘宇飞,刘艳丽,王鑫,周建军,俎达,贾美爽,刘飞,马强. 高矫顽力混合稀土永磁体的微结构与磁性能. 有色金属科学与工程. 2023(02): 288-294 .
![]() | |
3. |
杨兴远,蔡雨升,姜沐池,任德春,吉海宾,雷家峰,肖旋. 锻造变形对扩散连接TC4钛合金的影响. 有色金属科学与工程. 2023(04): 527-535 .
![]() | |
4. |
饶强,李骞,梁珍葵,吴涛,周锦睿,李忠恺,罗军明,黄有林. Dy_(30)Cu_(70)合金晶界扩散对烧结Nd-Fe-B磁体组织和磁性能的影响. 材料热处理学报. 2022(01): 61-67 .
![]() | |
5. |
赵鹏翔,白玉,马文,尹雪,王誉,娄树普,王强. 烧结钕铁硼磁体等离子喷涂-晶界扩散氧化镝研究. 表面技术. 2022(01): 325-331 .
![]() | |
6. |
宋小明,张廷安,豆志河,裴文利,鞠向明,周廉. 加剂方式对烧结钕铁硼磁体磁性能的影响. 稀有金属. 2021(02): 163-168 .
![]() | |
7. |
叶祥,胡贤君,黄伟光,朱远东,谢颖花. Al元素添加对离子型混合稀土MM-Fe-B合金的磁性能影响. 功能材料与器件学报. 2020(02): 108-112 .
![]() |