Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
OUYANG Kun, DOU Zhihe, ZHANG Ting'an, LIU Yan. The desulfurization process of lead and zinc mixed concentrate with oxygen[J]. Nonferrous Metals Science and Engineering, 2020, 11(2): 1-6. DOI: 10.13264/j.cnki.ysjskx.2020.02.001
Citation: OUYANG Kun, DOU Zhihe, ZHANG Ting'an, LIU Yan. The desulfurization process of lead and zinc mixed concentrate with oxygen[J]. Nonferrous Metals Science and Engineering, 2020, 11(2): 1-6. DOI: 10.13264/j.cnki.ysjskx.2020.02.001

The desulfurization process of lead and zinc mixed concentrate with oxygen

More Information
  • Received Date: December 08, 2019
  • Published Date: April 29, 2020
  • Due to the high energy consumption and environmental problems of sinter-blast furnace process of lead and zinc mixed concentrates, the use of bath smelting process instead of sintering process have become an alternative choice. The static method and XRD technique were used to study the effects of O2 flow rate, temperature and burden composition on desulfurization of lead and zinc mixed concentrates as well as the phase change of molten slag. The research results show that the high temperature melt desulfurization of lead and zinc mixed concentrates has the advantages of short smelting time and high desulfurization rate. The increase of O2 flow rate and reaction temperature was beneficial to the desulfurization reaction of lead and zinc mixed concentrates. The desulfurization rate of lead and zinc mixed concentrates decreased with the increase of Fe/SiO2and CaO/SiO2 mass ratio. However, when experimental temperature reached at 1 400 ℃, the increasing CaO/SiO2 mass ratio was conducive to the desulfurization of lead and zinc mixed concentrates. The spinel phase (ZnxFe3-xO4+y) was formed and increased with the increase of Fe/SiO2 mass ratio, when experimental temperature was at 1 250 ℃.
  • [1]
    刘世友. QSL铅熔炼法的发展[J].湖南有色金属, 1992, 8(4): 235-237. http://www.cnki.com.cn/Article/CJFDTotal-HNYJ199204012.htm
    [2]
    宋光辉.瓦纽科夫法直接炼铅及其进展[J].湖南有色金属, 2004, 20(2): 21-23. doi: 10.3969/j.issn.1003-5540.2004.02.007
    [3]
    周敬元.株冶铅烧结低浓度SO2烟气的治理[J].有色冶炼, 2002(5): 37-39. doi: 10.3969/j.issn.1672-6103.2002.05.013
    [4]
    赵娜, 苏艳蓉, 尤翔宇.奥斯麦特富氧顶吹炼铅工艺技术改造及烟气净化除尘[J].有色金属科学与工程, 2019, 10(1): 92-97. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201901015
    [5]
    赵娜, 朱莉薇, 尤翔宇.富氧侧吹直接炼铅烟气特性及净化除尘[J].有色金属科学与工程, 2018, 9(5): 61-65. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201805011
    [6]
    王成彦, 陈永强.中国铅锌冶金技术状况及发展趋势:铅冶金[J].有色金属科学与工程, 2016, 7(6): 1-7. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=2016060001
    [7]
    YAZAwA A. Thermodynamic evaluations of extractive metallurgical processes[J]. Metallurgical and Materials Transactions B, 1979, 10B: 307-321. https://www.researchgate.net/publication/226893187_Thermodynamic_evaluations_of_extractive_metallurgical_processes
    [8]
    FISCHER P, MACZEK H. The Present status of development of the QSL-lead process[J]. Journal of Metals, 1985: 60-64. doi: 10.1007/BF03338031
    [9]
    RATH G, VLAJCIC T, METELMANN O. Lead smelting in a submerged arc furnace[J]. JOM, 1990, 42(6): 39-40. doi: 10.1007/BF03220975
    [10]
    CHEN L, YANG T Z, BIN S, et al. An efficient reactor for high-lead slag reduction process: oxygen-rich side blow furnace[J]. The Minerals, Metals & Materials Society, 2014, 66: 1664-1669. https://www.researchgate.net/publication/270103874_An_Efficient_reactor_for_high-lead_slag_reduction_process_Oxygen-rich_side_blow_furnace
    [11]
    MOUNSEY E N, ROBILIARD K R. Sulfide smelting using ausmelt technology[J]. JOM, 1994, 46: 58-60. doi: 10.1007/BF03220779
    [12]
    MATYAS A G, MACKEYP J. Metallurgy of the direct smelting of lead[J]. JOM, 1976: 10-15. https://www.researchgate.net/publication/292825143_METALLURGY_OF_THE_DIRECT_SMELTING_OF_LEAD
    [13]
    NERMES E O, TALONEN T T. Flash smelting of lead concentrates[J]. Journal of Metals, 1982: 55-56. https://www.researchgate.net/publication/287961761_Flash_Smelting_of_Lead_Concentrates
    [14]
    HOANG J, REUTER M A, MATUSEwICZ R, et al. Top submerged lance direct zinc smelting[J]. Minerals Engineering, 2009, 22: 742-751. doi: 10.1016/j.mineng.2008.12.014
    [15]
    ZHANG H w, SHI X Y, ZHANG B, et al. Reduction of molten copper slags with mixed CO-CH4-Ar gas[J]. Metallurgical and Materials Transactions B, 2014, 45B: 582-589. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a7d68264e62b9bff63535c904848bf27
    [16]
    丁鹏, 杨卫严, 江晓健.高铅渣侧吹还原熔炼过程中泡沫渣的行为研究[J].有色冶金设计与研究, 2018, 39(2): 9-11. doi: 10.3969/j.issn.1004-4345.2018.02.004
    [17]
    LV X M, LV X w, wANG L w, et al. Viscosity and structure evolution of the SiO2-MgO-FeO-CaO-Al2O3 slag in ferronickel smelting process from laterite[J]. Min. Metall.Sect. B-Metall, 2017, 53(2): 147-154. doi: 10.2298/JMMB150911002L
    [18]
    OUYANG K, DOU Z H, ZHANG T A, et al. Viscosities in PbO-ZnO-"FexO" -SiO2-CaO system for lead and zinc smelting slags[J]. Metall. Res. Technol, 2019, 116(606): 1-8. https://www.researchgate.net/publication/335445470_Viscosities_in_PbO_-_ZnO_-_Fe_x_O_-_SiO_2_-CaO_system_for_lead_and_zinc_smelting_slags
    [19]
    ZHANG H w, SUN F, SHI X Y, et al. The Viscous and conductivity behavior of melts containing iron oxide in the FeOt-SiO2-CaO-Cu2O system for copper smelting slags[J]. Metall. Mater. Trans. B, 2012, 43B: 383-397. https://www.researchgate.net/publication/257708874_The_Viscous_and_Conductivity_Behavior_of_Melts_Containing_Iron_Oxide_in_the_FeOt-SiO2-CaO-Cu2O_System_for_Copper_Smelting_Slags
    [20]
    YAN Z, LV X, ZHANG J, et al. Influence of MgO, Al2O3 and CaO/SiO2 on the viscosity of blast furnace type slag with high Al2O3 and 5 wt-% TiO2[J]. Can. Met. Quart, 2016, 55: 186-194. doi: 10.1080/00084433.2015.1126903
    [21]
    PARK H, PARK J Y, KIM G H, et al. Effect of TiO2 on the viscosity and slag structure in blast furnace type slags[J]. Steel Researcher International, 2012, 83(2): 150-156. doi: 10.1002/srin.201100249
  • Related Articles

    [1]YANG Bo, WANG Xiao, LONG Xianhao, XIE Xian. Research on the optimization of beneficiation processes for a lead-zinc ore from inner mongolia autonomous region[J]. Nonferrous Metals Science and Engineering, 2024, 15(6): 922-931. DOI: 10.13264/j.cnki.ysjskx.2024.06.015
    [2]WANG Fei, NIU Jiazhen, GUO Shengqi, WANG Junli, GUO Jing. Prediction study of desulfurization during the argon protective electroslag remelting process[J]. Nonferrous Metals Science and Engineering, 2024, 15(4): 487-496. DOI: 10.13264/j.cnki.ysjskx.2024.04.003
    [3]PENG Jinpeng, ZHAN Jiaxin, ZHANG Bin, WU Yikang, LI Mingzhou. Numerical simulation of multiphase flow in oxygen bottom-blowing copper melting furnance[J]. Nonferrous Metals Science and Engineering, 2023, 14(3): 318-328. DOI: 10.13264/j.cnki.ysjskx.2023.03.004
    [4]WANG Jiansong, QIN Jia, JING Tao, HUANG Tao, SHI Xinxin, CAO Zhanmin. Thermodynamic simulation and optimization of lead side blowing oxidation smelting process[J]. Nonferrous Metals Science and Engineering, 2020, 11(5): 7-15. DOI: 10.13264/j.cnki.ysjskx.2020.05.002
    [5]ZHAO Na, ZHU Liwei, YOU Xiangyu. The flue gas characteristics of oxygen-enriched side-blown direct lead smelting process and dust purification[J]. Nonferrous Metals Science and Engineering, 2018, 9(5): 61-65. DOI: 10.13264/j.cnki.ysjskx.2018.05.011
    [6]GUO Xueyi, WANG Songsong, WANG Qinmeng, TIAN Qinghua. Development and application of oxygen bottom blowing copper smelting simulation software SKSSIM[J]. Nonferrous Metals Science and Engineering, 2017, 8(4): 1-6. DOI: 10.13264/j.cnki.ysjskx.2017.04.001
    [7]YANG Zhiqiang, XIONG Liangfeng, FANG Lin, GAO Qian, TIAN Lipeng. Preparation of new filling cementing materials with sintering desulfurization ash[J]. Nonferrous Metals Science and Engineering, 2015, 6(1): 8-12. DOI: 10.13264/j.cnki.ysjskx.2015.01.002
    [8]LIAO Lile, GUO Xueyi, WANG Qinmeng, TIAN Qinghua, ZHANG Yongzhu. Performance analysis of oxygen bottom blowing copper smelting process using METSIM[J]. Nonferrous Metals Science and Engineering, 2014, 5(5): 49-55. DOI: 10.13264/j.cnki.ysjskx.2014.05.009
    [9]GUO Xueyi, WANG Qinmeng, LIAO Lile, TIAN Qinghua, ZHANG Yongzhu. Mechanism and multiphase interface behavior of copper sulfide concentrate smelting in oxygen-enriched bottom blowing furnace[J]. Nonferrous Metals Science and Engineering, 2014, 5(5): 28-34. DOI: 10.13264/j.cnki.ysjskx.2014.05.005
    [10]CHENG Li-guo, WU Yan-peng, ZHOU Tie-zhu. Desulfurizing Technology by Calcium and Sodium Double Alkali Method[J]. Nonferrous Metals Science and Engineering, 2011, 2(4): 16-20.
  • Cited by

    Periodical cited type(7)

    1. 马利国,孙艳荣,张志鹏,李琬,李永贤,韩广豪,肖大庆,李冬至. Pr-Dy-Cu-Ga合金晶界扩散烧结Nd-Fe-B磁体的性能研究. 稀有金属. 2025(01): 80-90 .
    2. 刘宇飞,刘艳丽,王鑫,周建军,俎达,贾美爽,刘飞,马强. 高矫顽力混合稀土永磁体的微结构与磁性能. 有色金属科学与工程. 2023(02): 288-294 . 本站查看
    3. 杨兴远,蔡雨升,姜沐池,任德春,吉海宾,雷家峰,肖旋. 锻造变形对扩散连接TC4钛合金的影响. 有色金属科学与工程. 2023(04): 527-535 . 本站查看
    4. 饶强,李骞,梁珍葵,吴涛,周锦睿,李忠恺,罗军明,黄有林. Dy_(30)Cu_(70)合金晶界扩散对烧结Nd-Fe-B磁体组织和磁性能的影响. 材料热处理学报. 2022(01): 61-67 .
    5. 赵鹏翔,白玉,马文,尹雪,王誉,娄树普,王强. 烧结钕铁硼磁体等离子喷涂-晶界扩散氧化镝研究. 表面技术. 2022(01): 325-331 .
    6. 宋小明,张廷安,豆志河,裴文利,鞠向明,周廉. 加剂方式对烧结钕铁硼磁体磁性能的影响. 稀有金属. 2021(02): 163-168 .
    7. 叶祥,胡贤君,黄伟光,朱远东,谢颖花. Al元素添加对离子型混合稀土MM-Fe-B合金的磁性能影响. 功能材料与器件学报. 2020(02): 108-112 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views (100) PDF downloads (10) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return