Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
WANG Jiansong, QIN Jia, JING Tao, HUANG Tao, SHI Xinxin, CAO Zhanmin. Thermodynamic simulation and optimization of lead side blowing oxidation smelting process[J]. Nonferrous Metals Science and Engineering, 2020, 11(5): 7-15. DOI: 10.13264/j.cnki.ysjskx.2020.05.002
Citation: WANG Jiansong, QIN Jia, JING Tao, HUANG Tao, SHI Xinxin, CAO Zhanmin. Thermodynamic simulation and optimization of lead side blowing oxidation smelting process[J]. Nonferrous Metals Science and Engineering, 2020, 11(5): 7-15. DOI: 10.13264/j.cnki.ysjskx.2020.05.002

Thermodynamic simulation and optimization of lead side blowing oxidation smelting process

More Information
  • Received Date: August 24, 2020
  • Published Date: October 30, 2020
  • Thermodynamic simulation of lead side-blowing oxidation smelting process was carried out by FactSage software. The calculated equilibrium phase composition was consistent with the actual output, which verified the feasibility of thermodynamic analysis. The effects of oxygen-to-feed ratio and melting temperature on the distribution ratio of elements among each equilibrium phase were studied. The results showed that with the increase of oxygen-to-feed ratio, the proportion of valuable elements such as lead and copper into high lead slag will raise, and the desulfurization effect of furnace charge will be better, but at the same time, the impurity content in lead liquid will rise correspondingly; Increasing the smelting temperature is beneficial to reduce the sulfur content of slag and improve the grade of crude lead. But higher temperature will aggravate the volatilization of valuable metal elements such as lead and zinc. The lead side-blowing oxidation smelting could be controlled, by using the macro process to calculate batch balance. Under the condition that the quality of crude lead and high-lead slag reaches the desired value, the process is optimized via comprehensively considering the direct yield of valuable elements and the soot rate. It is suggested that the oxygen-to-feed ratio should be controlled at about 124 m3/t and the smelting temperature at about 1 067 ℃.
  • [1]
    王成彦, 陈永强.中国铅锌冶金技术状况及发展趋势:铅冶金[J].有色金属科学与工程, 2016, 8(6): 1-7. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=2016060001
    [2]
    赵娜, 朱莉薇, 尤翔宇.富氧侧吹直接炼铅烟气特性及净化除尘[J].有色金属科学与工程, 2018, 9(5): 61-65. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201805011
    [3]
    刘军, 刘燕庭.富氧侧吹直接炼铅工艺研究与应用[J].中国有色冶金, 2013, 42(1): 34-36. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysyl201301007
    [4]
    贺毅林, 张岭.富氧侧吹处理含铅多金属物料的生产实践[J].世界有色金属, 2018(6): 23-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sjysjs201806008
    [5]
    CHEN L, YANG T, BIN S, et al. An efficient reactor for high-lead slag reduction process: Oxygen-rich side blow furnace[J]. JOM, 2014, 66(9): 1664-1669. doi: 10.1007/s11837-014-1057-1
    [6]
    WU X. Application of CSC technology in nonferrous metallurgy[C]//PbZn 2020: 9th International Symposium on Lead and Zinc Processing. Springer, Cham, 2020: 201-217.
    [7]
    李贵.铅冶炼技术发展的观察与思考[J].中国有色金属, 2017(12): 38-39. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysjsgy201712007
    [8]
    王成彦, 陈永强.中国铅锌冶金技术状况及发展趋势:节能潜力[J].有色金属科学与工程, 2017, 8(3): 1-6. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=2017030001
    [9]
    KANDINER H J, BRINKLEY S R. Calculation of complex equilibrium between copper matte and slag[J]. Canadian Metallurgical Quarterly, 1986, 25(2): 113-121. doi: 10.1179/cmq.1986.25.2.113
    [10]
    WHITE W B, JOHNSON S M, DANTZIG G B. Chemical equilibrium in complex mixture[J]. Journal of Chemical Physics, 1958, 28(5): 751-755. doi: 10.1063/1.1744264
    [11]
    谭鹏夫, 张传福, 张瑞瑛. QSL炼铅过程的计算机模型[J].中南工业大学学报(自然科学版), 1996, 27(5): 40-43. http://www.cnki.com.cn/Article/CJFDTotal-ZNGD605.008.htm
    [12]
    谭鹏夫, 张传福. QSL炼铅过程的热力学分析[J].中南工业大学学报(自然科学版), 1996, 27(6): 676-679. http://www.cnki.com.cn/Article/CJFDTotal-ZNGD606.009.htm
    [13]
    汪金良, 张传福, 张文海.铅闪速熔炼过程的多相平衡模型[J].中南大学学报(自然科学版), 2012, 43(2): 429-434. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zngydxxb201202005
    [14]
    汪金良, 张文海, 张传福.硫化铅矿闪速熔炼过程的热力学分析[J].中国有色金属学报, 2011, 21(11): 2952-2957. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgysjsxb201111036
    [15]
    陈霖, 王振虎, 陈威, 等.富氧底吹炼铅氧化熔炼元素分配热力学模拟[J].有色金属(冶炼部分), 2018(9): 1-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysjs-yl201809001
    [16]
    刘燕庭, 杨天足, 李明周.铅富氧侧吹氧化熔池熔炼相平衡计算模型[J].中国有色金属学报, 2019, 29(11): 2609-2619. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgysjsxb201911018
    [17]
    刘燕庭, 杨天足, 李明周.铅富氧侧吹氧化熔炼多元多相平衡分析[J].中国有色金属学报, 2020, 30(5): 1110-1118. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgysjsxb202005016
    [18]
    乔芝郁.冶金和材料计算物理化学[M].北京:冶金工业出版社, 1999.
    [19]
    JUNG I H, VAN ENDE M A. Computational thermodynamic calculations: factSage from CALPHAD thermodynamic database to virtual process simulation[J]. Metallurgical and Materials Transactions B, 2020, 51(4): 1-24. doi: 10.1007/s11663-020-01908-7
    [20]
    张立, 蔺公敏, 宾万达, 等.氧气侧吹还原炉及高铅渣熔融还原过程研究[J].中国有色冶金, 2012, 41(2): 12-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysyl201202003
    [21]
    CHASE JR M W. NIST-JANAF thermochemical tables[M]. Gaithersburg: American Insti-tute of Physics and the American Chemical Society, 1998.
    [22]
    BARIN I. Thermochemical Data of Pure Substances, Third Edition[M]// Thermochemical data of pure substances. VCH, 2008.
    [23]
    全国有色金属标准化技术委员会.YS/T 71-2013, 粗铅[S].北京: 中国标准出版社, 2014.
    [24]
    全国有色金属标准化技术委员会.GB/T 20424-2006, 重金属精矿产品中有害元素的限量规范[S].北京: 中国标准出版社, 2006.
  • Related Articles

    [1]SU Lijuan, XU Jifang, ZUO Long. Thermodynamic calculation of precipitation behavior of chromium spinel in the CaO-SiO2-MgO-Al2O3-FeO-Cr2O3 slag system[J]. Nonferrous Metals Science and Engineering, 2023, 14(3): 302-310. DOI: 10.13264/j.cnki.ysjskx.2023.03.002
    [2]TONG Zhifang, JIA Zhiheng, ZENG Qingpo, XU Congcong. Thermodynamics of the effects of slag compositions on the precipitation of chromium spinel in CaO-MgO-Al2O3-Si2O-Cr2O3-FeO-TiO2 slag system[J]. Nonferrous Metals Science and Engineering, 2020, 11(3): 1-10. DOI: 10.13264/j.cnki.ysjskx.2020.03.001
    [3]XIAO Chao, ZENG Li, LI Yibing, LIU Yezi, WEI Chenggui, HUANG Yongrun. Thermodynamic analysis on removing Cr(III) by phosphate precipitation[J]. Nonferrous Metals Science and Engineering, 2017, 8(5): 103-108. DOI: 10.13264/j.cnki.ysjskx.2017.05.015
    [4]DUAN Shengchao, GUO Hanjie, GUO Jing, LU Hao, SHI Xiao, YANG Wensheng, LIU Shuai, YU Mengxi. Thermodynamic calculating of binary alloy melts based on atom-molecule theory[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 7-15. DOI: 10.13264/j.cnki.ysjskx.2017.03.002
    [5]WANG Jin-liang, ZHOU Jian. Thermodynamic analysis of jamesonite flash smelting process[J]. Nonferrous Metals Science and Engineering, 2016, 7(5): 21-25. DOI: 10.13264/j.cnki.ysjskx.2016.05.004
    [6]WANG Xiayang, HE Jing. Thermodynamic analysis of fuming process for treating goethite residues[J]. Nonferrous Metals Science and Engineering, 2016, 7(3): 6-14. DOI: 10.13264/j.cnki.ysjskx.2016.03.002
    [7]YU Chang-lin, ZHOU Xiao-chun, HU Jiu-biao, FAN Qi-zhe. Thermodynamic Simulation Analysis of the Catalytic Partial Oxidation of Methane[J]. Nonferrous Metals Science and Engineering, 2014, 5(2): 26-32. DOI: 10.13264/j.cnki.ysjskx.2014.02.005
    [8]YI Jun, CAO Cai-fang. Thermodynamic analysis of cobalt tungstate's hydrometallurgical decomposition[J]. Nonferrous Metals Science and Engineering, 2013, 4(5): 44-47,126. DOI: 10.13264/j.cnki.ysjskx.2013.05.023
    [9]CHAI Li-yuan, WANG Hai-tang, YOU Xiang-yu, WANG Qing-wei, SHU Yu-de. Thermodynamics equilibrium of M(Ⅱ)-S-H2O system[J]. Nonferrous Metals Science and Engineering, 2012, 3(5): 8-13. DOI: 10.13264/j.cnki.ysjskx.2012.05.020
    [10]NIE Jin-xia, HEN Yun-ren, CHEN Ming CHEN Ming. Thermodynamics and Kinetics of Copper Sorption by Rice Bran[J]. Nonferrous Metals Science and Engineering, 2008, 22(4): 35-38.
  • Cited by

    Periodical cited type(3)

    1. 叶钟林,朱云锋,张海培,周世伟,李博,施哲. 铜富氧熔炼生产高品位冰铜过程热力学分析. 昆明理工大学学报(自然科学版). 2022(04): 1-7+54 .
    2. 王建松,覃贾,史欣欣,荆涛,陈伟,黄涛,曹战民. 铅富氧侧吹氧化-还原过程动力学模拟. 中国有色金属学报. 2022(10): 3134-3146 .
    3. 王亲猛,黄明星,王松松,李栋,田庆华,郭学益. 典型有色金属冶炼过程热力学模拟的研究进展. 有色金属(冶炼部分). 2021(10): 1-12 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (97) PDF downloads (10) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return