Citation: | WANG Fei, NIU Jiazhen, GUO Shengqi, WANG Junli, GUO Jing. Prediction study of desulfurization during the argon protective electroslag remelting process[J]. Nonferrous Metals Science and Engineering, 2024, 15(4): 487-496. DOI: 10.13264/j.cnki.ysjskx.2024.04.003 |
During the industrial-scale argon P-ESR process, the accumulation of sulfur content removed from steel in melt slag will affect the efficiency of desulfurization reaction, causing a non-uniformity of sulfur content in the remelted ingot. Currently, research on electroslag desulfurization has been mainly conducted at a relatively small experimental scale, whose kinetic conditions is significantly different from the large-scale one so that its relevant research findings have its limitations on industrial applications. Therefore, this study established a desulfurization reaction model for industrial-scale electroslag remelting process. Its calculation results were basically consistent with the experimental ones, verified by a 3 t P-ESR experiment. The research results showed that reducing the initial sulfur content in the electrode and slag, increasing the slag volume and the sulfur capacity, and lowering the electrode descent speed are all conducive to improving the desulfurization ratio. A simplified formula of the model based on these research findings has been derived, which can be directly used to approximately calculate the sulfur content at different mass positions within the remelted ingot.
[1] |
巨银军,吕子宇,邢立东,等. 20CrMnTiH冶炼全流程夹杂物演变分析[J]. 有色金属科学与工程,2022,13(4):20-27.
|
[2] |
李太全,包燕平,吴华杰,等. 高级别管线钢超低硫控制研究[J]. 钢铁,2009,44(5):35-38.
|
[3] |
李正邦. 电渣冶金的理论与实践[M]. 北京:冶金工业出版社,2010:50-52.
|
[4] |
王强,王芳,贺铸,等. 电渣重熔精炼过程数值模拟研究进展[J]. 钢铁研究学报,2021,33(8):33-46.
|
[5] |
DUAN S C,SHI X,WANG F,et al. Investigation of desulfurization of inconel 718 superalloys by esr type slags with different TiO2 content[J]. Journal of Materials Research and Technology,2019,8(3):2508-2516.
|
[6] |
SJOBERG B,CEDERLUND A,ENGSTROM C H. The influence of the ESR melting rate and ingot size on some important properties of tool steels [C]// Proceedings of the fourth international symposium on electroslag remelting processes,1973:218-228.
|
[7] |
DUAN S C,SHI X,WANG F,et al. A review of methodology development for controlling loss of alloying elements during the electroslag remelting process[J]. Metallurgical and Materials Transactions B,2019,50B(6):3055-3071.
|
[8] |
PHILIP T V. ESH:a means of improving transverse mechanical properties in tool and die steels[J]. Metals Technology,1975,2(1):554-564.
|
[9] |
YANG S X,LI H B,FENG H,et al. Desulfurization behavior of Fe-18Cr-18Mn alloy during the pressurized electroslag remelting with different atmospheres and Na2O-containing slags[J]. Metallurgical and Materials Transactions B,2021,52B(3):1294-1308.
|
[10] |
KANG C,LIU F,GENG X,et al. Desulfurization behavior of low-sulfur plastic die steel during esr process under different atmospheres[J]. ISIJ International,2021,61(1):219-228.
|
[11] |
CAO H,JIANG Z,DONG Y,et al. Effect of single power two circuits electroslag remelting process on the cleanliness of the remelted ingot[J]. ISIJ International,2019,60(2):247-257.
|
[12] |
WANG X,LI G,CHEN Y,et al. Industrial trials on preparation of cerium‐treated H13 steel by electroslag remelting with cerium‐oxide containing slag[J]. Steel Research International,2023,doi:10. 1002/srin. 202200786. doi: 10. 1002/srin. 202200786
|
[13] |
傅杰. 电渣重熔过程中氧化物夹杂去除机理的探讨[J]. 金属学报,1979,15(4):526-539.
|
[14] |
魏季和,MITCHELL A. 交流电渣重熔过程中的成分变化:理论传质模型[J]. 金属学报,1984,20(5):261-279.
|
[15] |
SHI C B,HUANG Y,ZHANG J X,et al. Review on desulfurization in electroslag remelting[J]. International Journal of Minerals,Metallurgy and Materials,2021,28(1):18-29.
|
[16] |
DUAN Y,LI B,LIU Z,et al. Numerical study on the effect of low-frequency power supply on desulfurization in the electroslag remelting process[J]. Steel Research International,2023,doi:10. 1002/srin. 202300081. doi: 10. 1002/srin. 202300081
|
[17] |
孙毓磊,吴少鹏,李万明,等. 保护气氛下电渣重熔过程中界面脱硫传质动力学[J]. 材料与冶金学报,2020,19(1):24-29.
|
[18] |
陈希春,王飞,史成斌,等. 电渣重熔工艺对GH4169脱硫的影响[J]. 钢铁研究学报,2012,24(12):11-14.
|
[19] |
FRASER M E,MITCHELL A. Mass transfer in the electroslag process. Pt. 1. mass-transfer model[J]. Ironmaking Steelmaking,1976,3(5):288-301.
|
[20] |
王振虎,李少英,郭汉杰,等. CaO含量对CaF2-Al2O3-CaO-Ce2O3渣系中Ce2O3行为的影响[J]. 有色金属科学与工程,2019,10(3):6-13.
|
[21] |
ANDERSSON M A T,JÖNSSON P G,NZOTTA M M. Application of the sulphide capacity concept on high-basicity ladle slags used in bearing-steel production [J]. ISIJ International,1999,39(11):1140-1149.
|
[22] |
FINCHAM C J B,RICHARDSON F D. The behaviour of sulphur in silicate and aluminate melts[J]. Mathematical and Physical Sciences,1954,223(1152):40-62.
|
[23] |
BJÖRKLUND J,MIKI T,ANDERSSON M,et al. Effect of temperature on oxygen activity during ladle treatment [J]. ISIJ International,2008,48(4):438-445.
|
[24] |
BAN-YA S,HOBO M,KAJI T,et al. Sulphide capacity and sulphur solubility in CaO-Al2O3 and CaO-Al2O3-CaF2 slags [J]. ISIJ International,2004,44(11):1810-1816.
|
[25] |
西德]德国钢铁工程师协会编. 王俭等译. 渣图集[M]. 北京:冶金工业出版社,1989:152.
|
[26] |
HOU D,JIANG Z H,DONG Y W,et al. Mass transfer model of desulfurization in the electroslag remelting process[J]. Metallurgical and Materials Transactions B,2017,48(3):1885-1897.
|
[27] |
吴铿,梁志刚,张二华,等. LF精炼过程中硫分配比和脱硫动力学方程研究[J]. 金属学报,2001,37(10):1069-1072.
|
[28] |
CHEN X C,SHI C B,GUO H J,et al. Investigation of oxide inclusions and primary carbonitrides in inconel 718 superalloy refined through electroslag remelting process[J]. Metallurgical and Materials Transactions B,2012,43(6):1596-1607.
|
[29] |
WANG F,CHEN X C,GUO H J. Aluminum deoxidization of H13 hot die steel through inert gas protection electroslag remelting[J]. Iron and Steel Technology,2013,10(1):99-107.
|
1. |
辛同泽,王敏,包燕平. 转炉吹炼过程喷溅机理及预报模型研究进展. 工程科学学报. 2023(10): 1716-1728 .
![]() | |
2. |
马德文,李晶,宋沈杨,王长城,黄玉鸿,王翔宇. 基于转炉反应动力学的钢液成分与温度的预测. 炼钢. 2023(05): 17-26 .
![]() | |
3. |
于海林,王言伟. 转炉烟道氧枪口结构改进及应用. 工业加热. 2023(10): 22-24 .
![]() | |
4. |
刘善喜,张朝发. 273氧枪喷头空气动力学模拟研究. 冶金能源. 2021(02): 51-54 .
![]() | |
5. |
于海波,刘大方,杜昱初,招杨,杨文杰,管桂生. 新型炼铜转炉设计应用与实践. 有色金属科学与工程. 2020(06): 43-47 .
![]() |