Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
WU Caibin, WU Zhaoli, PING Xuecheng, ZHAO Chengfei, WANG Feng. Impact crushing experiment and numerical evaluation method for composite laminates[J]. Nonferrous Metals Science and Engineering, 2019, 10(6): 61-69. DOI: 10.13264/j.cnki.ysjskx.2019.06.010
Citation: WU Caibin, WU Zhaoli, PING Xuecheng, ZHAO Chengfei, WANG Feng. Impact crushing experiment and numerical evaluation method for composite laminates[J]. Nonferrous Metals Science and Engineering, 2019, 10(6): 61-69. DOI: 10.13264/j.cnki.ysjskx.2019.06.010

Impact crushing experiment and numerical evaluation method for composite laminates

More Information
  • Received Date: August 04, 2019
  • Published Date: December 30, 2019
  • Fiber reinforced laminates are commonly used in the manufacture of circuit board substrates, impact crushing process prediction of the fiber reinforced lamitates is an important basis for the design of a crushing machine of used circuit board. Firstly, impact energy corresponding to in plane and out-of-plane impact is obtained by pendulum impact tests. Then, the Hashin damage theory as well as the cohesive zone method is used to simulate the impact crushing process of glass fiber reinforced laminates. The numerical results of impact energy and velocity changes and are in good agreement with the experiments, which indicates that the present model can be applied to the low-speed impact problem of glass fiber composite laminates. According to the impact damage process analysis, it is found that in-plane impact crushing can avoid additional energy consumption caused by interface delamination, so that the in-plane impact crushing effect is better than the out-plane impact crushing effect. The present prediction model can be further applied to predict the crushing process of circuit board substrates and design the transmission system of the impact crushing machine.
  • [1]
    ZHANG Y H, LIU S L, XIE H H, et al. Current status on leaching precious metals from waste printed circuit boards[J]. Procedia Environmental Sciences, 2012, 16(4):560-568. http://cn.bing.com/academic/profile?id=0bf6d7946bdecee158cddcdce94c4674&encoded=0&v=paper_preview&mkt=zh-cn
    [2]
    HICKS C, DIETMAR R, EUGSTER M. The recycling and disposal of electrical and electronic waste in China-legislative and market responses[J]. Environmental Impact Assessment Review, 2005, 25(5):459-471. doi: 10.1016/j.eiar.2005.04.007
    [3]
    赵春虎.废旧印制电路板中非金属的热解处理及金的回收技术研究[D].广州: 华南理工大学, 2017. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CDFD&dbname=CDFD&filename=1017734288.nh
    [4]
    DANGTUNGEE R, SOMCHUA S, SIENGCHIN S. Recycling glass fiber/epoxy resin of waste printed circuit boards:morphology and Mechanical properties[J]. Mechanics of Composite Materials, 2012, 48(3):325-330. doi: 10.1007/s11029-012-9279-1
    [5]
    ZHOU Y H, QIU K Q. A new technology for recycling materials from waste printed circuit boards[J]. Journal of Hazardous Materials, 2010, 175(1/2/3): 823-828. http://cn.bing.com/academic/profile?id=1cff8ff4a3e453b2f75c4d160171b83c&encoded=0&v=paper_preview&mkt=zh-cn
    [6]
    SARAVANAKUMAR K, SUBRAMANIAN H, ARUMUGAM V, et al. Influence of milled glass fillers on the impact and compression after impact behavior of glass/epoxy composite laminates[J]. Polymer Testing, 2019, 75:133-141. doi: 10.1016/j.polymertesting.2019.02.007
    [7]
    XIN H H, LIU Y Q, MOSALLAM A S, et al. Evaluation on material behaviors of pultruded glass fiber reinforced polymer (GFRP) laminates[J]. Composite Structures, 2017, 182: 283-300. doi: 10.1016/j.compstruct.2017.09.006
    [8]
    MARS J, CHEBBI E, WALI M, et al. Numerical and experimental investigations of low velocity impact on glass fiber-reinforced polyamide[J]. Composites Part B: Engineering, 2018, 146: 116-123. doi: 10.1016/j.compositesb.2018.04.012
    [9]
    KEVIN R, PATRICK X L, LAWRENCE E, et al. Mechanisms and characterization of impact damage in 2D and 3D woven fiber-reinforced composites[J]. Composites Part A: Applied Science and Manufacturing, 2017, 101:432-443. doi: 10.1016/j.compositesa.2017.07.004
    [10]
    ASTM D 3039-08. Standard test method for tensile properties of fiber reinforced metal matrix Composites[Z]. American Society for Testing and Materials, 2008.
    [11]
    徐琪.复合材料面内剪切性能测试方法的研究[J].玻璃纤维, 2012(3):6-10. doi: 10.3969/j.issn.1005-6262.2012.03.002
    [12]
    ASTM D5379/D5379M-12. Standard test method for shear properties of composite materials by the V-notched beam method[Z]. American Society for Testing and Materials, 2012.
    [13]
    王瑞, 陈海霞, 郭兴峰, 等.层合板复合材料的层间剪切强度评价方法及其改进研究[J].玻璃钢/复合材料, 2004(3):8-11. doi: 10.3969/j.issn.1003-0999.2004.03.002
    [14]
    吴振, 陈健.基于Hashin准则的复合材料层合结构低速冲击研究[J].沈阳航空航天大学学报, 2017, 34(5):12-20. doi: 10.3969/j.issn.2095-1248.2017.05.002
    [15]
    LONG S, YAO X, ZHANG X. Delamination prediction in composite laminates under low-velocity impact[J]. Composite Structures, 2015, 132:290-298. doi: 10.1016/j.compstruct.2015.05.037
    [16]
    LINDE P, BOER H D. Modelling of inter-rivet buckling of hybrid composites[J]. Composite Structures, 2006, 73(2):221-228. doi: 10.1016/j.compstruct.2005.11.062
    [17]
    FAGGIANI A, FALZON B G. Predicting low-velocity impact damage on a stiffened composite panel[J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(6):740-749. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c7b17252d522457ee11e215643ee8f0b
    [18]
    DUARTE A P C, DíAZ SáEZ A, SILVESTRE N. Comparative study between XFEM and hashin damage criterion applied to failure of composites[J]. Thin-Walled Structures, 2015, 115:277-288. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6606edeee94a09c519f6d11f47a37c69
    [19]
    LI Z, GHOSH S, GETINET N. Micromechanical modeling and characterization of damage evolution in glass fiber epoxy matrix composites[J]. Mechanics of Materials, 2016, 99:37-52. doi: 10.1016/j.mechmat.2016.05.006
    [20]
    拓宏亮, 马晓平, 卢智先.基于连续介质损伤力学的复合材料层合板低速冲击损伤模型[J].复合材料学报, 2018, 35(7):202-212. http://d.old.wanfangdata.com.cn/Periodical/fhclxb201807026
    [21]
    陈海立.冲破式复合材料易碎盖破坏机理研究[D].南京: 南京航空航天大学, 2013. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D565394
    [22]
    庄茁.基于ABAQUS的有限元分析和应用[M].北京:清华大学出版社, 2009:258.
  • Related Articles

    [1]GUO Hao, WANG Yajie, ZHAO Hongbo, ZUO Haibin. Numerical simulation of pulverized coal forming process[J]. Nonferrous Metals Science and Engineering, 2024, 15(3): 357-363. DOI: 10.13264/j.cnki.ysjskx.2024.03.006
    [2]NIE Jincheng, YE Jieyun, WANG Zhigang, HE Xiaoxuan, CHEN Zihui. Casting process optimization of martensitic stainless steel baffle based on ProCAST numerical simulation[J]. Nonferrous Metals Science and Engineering, 2020, 11(6): 27-33. DOI: 10.13264/j.cnki.ysjskx.2020.06.004
    [3]CHENG Qiuting, DENG Fei, CHEN Yanhong, XIA Yijiang, WANG Xiaojun. Numerical simulation analysis on the stability of mined-out area[J]. Nonferrous Metals Science and Engineering, 2015, (2): 85-88. DOI: 10.13264/j.cnki.ysjskx.2015.02.016
    [4]ZHAO Kui, SHAO Hai, XU Feng, ZENG Peng, DENG Xiao-ping, WANG Ming. Numerical simulation of stability of mining of different mining entrances in a copper mine[J]. Nonferrous Metals Science and Engineering, 2013, 4(2): 46-50. DOI: 10.13264/j.cnki.ysjskx.2013.02.009
    [5]WU Chang-fu, TANG Min-bo, GU Peng, LIU Hou-ming. Numerical simulation on the partial ventilation in the single entry mine tunnel[J]. Nonferrous Metals Science and Engineering, 2012, 3(3): 71-73. DOI: 10.13264/j.cnki.ysjskx.2012.03.014
    [6]RAO Yun-zhang, CHEN Hui, XIAO Guang-zhe, CHEN Guo-liang. On the Design of Stope Bottom Structures Based on FLAC 3D Numerical Simulation[J]. Nonferrous Metals Science and Engineering, 2011, 2(2): 43-47. DOI: 10.13264/j.cnki.ysjskx.2011.02.009
    [7]XU Cong-wu, ZHAO Kui, XIE Dao-hui. Numerical Simulation Research on Tunnel Arrangement in Schistosity Rock[J]. Nonferrous Metals Science and Engineering, 2008, 22(3): 6-8.
    [8]GE Wen-jie, LI Xi-bing. Application of Numerical Simulation in Bolt Supporting Technology[J]. Nonferrous Metals Science and Engineering, 2007, 21(4): 21-23.
    [9]CUI Dong-liang, LI Xi-bing, ZHAO Guo-ya. Analysis of the Numerical Simulation to Structure Parameter of Hard-To-Mine Ore Body in Xincheng Gold Mine[J]. Nonferrous Metals Science and Engineering, 2006, 20(3): 13-17.
    [10]QIAO Jun-yu, XU Guo-yuan. Numerical Simulation in Reinforcement for Deep Foundation Pit with Soil Nailing[J]. Nonferrous Metals Science and Engineering, 2005, 19(4): 24-24.
  • Cited by

    Periodical cited type(6)

    1. 蒋瑞,陈泰强. 锌离子化海泡石涂层锌负极的制备与性能. 广州化学. 2024(01): 49-55 .
    2. 蔡志勇,文璟,王日初,彭超群. 增强体表面改性在高导热金属基复合材料中的应用. 有色金属科学与工程. 2024(02): 237-255 . 本站查看
    3. 徐杰,阮挺婷,马全新,孙蓉,路胜利. 水系锌离子电池负极改性策略研究进展. 有色金属科学与工程. 2024(04): 513-526 . 本站查看
    4. 周飞. 船用高比表面积二氧化钛核复合光催化材料研究. 舰船科学技术. 2023(12): 47-50 .
    5. 李尚颖,王春源,卫文飞,汪洋. 凹凸棒石包覆的锌电极的制备及其对电池性能的影响. 硅酸盐学报. 2023(10): 2617-2625 .
    6. 范敏敏,罗成玲,薛裕华. 水系锌电池Se@Zn负极的制备及性能. 广州化学. 2023(06): 36-39 .

    Other cited types(7)

Catalog

    Article Metrics

    Article views (80) PDF downloads (0) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return