Citation: | WU Caibin, WU Zhaoli, PING Xuecheng, ZHAO Chengfei, WANG Feng. Impact crushing experiment and numerical evaluation method for composite laminates[J]. Nonferrous Metals Science and Engineering, 2019, 10(6): 61-69. DOI: 10.13264/j.cnki.ysjskx.2019.06.010 |
[1] |
ZHANG Y H, LIU S L, XIE H H, et al. Current status on leaching precious metals from waste printed circuit boards[J]. Procedia Environmental Sciences, 2012, 16(4):560-568. http://cn.bing.com/academic/profile?id=0bf6d7946bdecee158cddcdce94c4674&encoded=0&v=paper_preview&mkt=zh-cn
|
[2] |
HICKS C, DIETMAR R, EUGSTER M. The recycling and disposal of electrical and electronic waste in China-legislative and market responses[J]. Environmental Impact Assessment Review, 2005, 25(5):459-471. doi: 10.1016/j.eiar.2005.04.007
|
[3] |
赵春虎.废旧印制电路板中非金属的热解处理及金的回收技术研究[D].广州: 华南理工大学, 2017. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CDFD&dbname=CDFD&filename=1017734288.nh
|
[4] |
DANGTUNGEE R, SOMCHUA S, SIENGCHIN S. Recycling glass fiber/epoxy resin of waste printed circuit boards:morphology and Mechanical properties[J]. Mechanics of Composite Materials, 2012, 48(3):325-330. doi: 10.1007/s11029-012-9279-1
|
[5] |
ZHOU Y H, QIU K Q. A new technology for recycling materials from waste printed circuit boards[J]. Journal of Hazardous Materials, 2010, 175(1/2/3): 823-828. http://cn.bing.com/academic/profile?id=1cff8ff4a3e453b2f75c4d160171b83c&encoded=0&v=paper_preview&mkt=zh-cn
|
[6] |
SARAVANAKUMAR K, SUBRAMANIAN H, ARUMUGAM V, et al. Influence of milled glass fillers on the impact and compression after impact behavior of glass/epoxy composite laminates[J]. Polymer Testing, 2019, 75:133-141. doi: 10.1016/j.polymertesting.2019.02.007
|
[7] |
XIN H H, LIU Y Q, MOSALLAM A S, et al. Evaluation on material behaviors of pultruded glass fiber reinforced polymer (GFRP) laminates[J]. Composite Structures, 2017, 182: 283-300. doi: 10.1016/j.compstruct.2017.09.006
|
[8] |
MARS J, CHEBBI E, WALI M, et al. Numerical and experimental investigations of low velocity impact on glass fiber-reinforced polyamide[J]. Composites Part B: Engineering, 2018, 146: 116-123. doi: 10.1016/j.compositesb.2018.04.012
|
[9] |
KEVIN R, PATRICK X L, LAWRENCE E, et al. Mechanisms and characterization of impact damage in 2D and 3D woven fiber-reinforced composites[J]. Composites Part A: Applied Science and Manufacturing, 2017, 101:432-443. doi: 10.1016/j.compositesa.2017.07.004
|
[10] |
ASTM D 3039-08. Standard test method for tensile properties of fiber reinforced metal matrix Composites[Z]. American Society for Testing and Materials, 2008.
|
[11] |
徐琪.复合材料面内剪切性能测试方法的研究[J].玻璃纤维, 2012(3):6-10. doi: 10.3969/j.issn.1005-6262.2012.03.002
|
[12] |
ASTM D5379/D5379M-12. Standard test method for shear properties of composite materials by the V-notched beam method[Z]. American Society for Testing and Materials, 2012.
|
[13] |
王瑞, 陈海霞, 郭兴峰, 等.层合板复合材料的层间剪切强度评价方法及其改进研究[J].玻璃钢/复合材料, 2004(3):8-11. doi: 10.3969/j.issn.1003-0999.2004.03.002
|
[14] |
吴振, 陈健.基于Hashin准则的复合材料层合结构低速冲击研究[J].沈阳航空航天大学学报, 2017, 34(5):12-20. doi: 10.3969/j.issn.2095-1248.2017.05.002
|
[15] |
LONG S, YAO X, ZHANG X. Delamination prediction in composite laminates under low-velocity impact[J]. Composite Structures, 2015, 132:290-298. doi: 10.1016/j.compstruct.2015.05.037
|
[16] |
LINDE P, BOER H D. Modelling of inter-rivet buckling of hybrid composites[J]. Composite Structures, 2006, 73(2):221-228. doi: 10.1016/j.compstruct.2005.11.062
|
[17] |
FAGGIANI A, FALZON B G. Predicting low-velocity impact damage on a stiffened composite panel[J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(6):740-749. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c7b17252d522457ee11e215643ee8f0b
|
[18] |
DUARTE A P C, DíAZ SáEZ A, SILVESTRE N. Comparative study between XFEM and hashin damage criterion applied to failure of composites[J]. Thin-Walled Structures, 2015, 115:277-288. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6606edeee94a09c519f6d11f47a37c69
|
[19] |
LI Z, GHOSH S, GETINET N. Micromechanical modeling and characterization of damage evolution in glass fiber epoxy matrix composites[J]. Mechanics of Materials, 2016, 99:37-52. doi: 10.1016/j.mechmat.2016.05.006
|
[20] |
拓宏亮, 马晓平, 卢智先.基于连续介质损伤力学的复合材料层合板低速冲击损伤模型[J].复合材料学报, 2018, 35(7):202-212. http://d.old.wanfangdata.com.cn/Periodical/fhclxb201807026
|
[21] |
陈海立.冲破式复合材料易碎盖破坏机理研究[D].南京: 南京航空航天大学, 2013. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D565394
|
[22] |
庄茁.基于ABAQUS的有限元分析和应用[M].北京:清华大学出版社, 2009:258.
|
[1] | GUO Hao, WANG Yajie, ZHAO Hongbo, ZUO Haibin. Numerical simulation of pulverized coal forming process[J]. Nonferrous Metals Science and Engineering, 2024, 15(3): 357-363. DOI: 10.13264/j.cnki.ysjskx.2024.03.006 |
[2] | NIE Jincheng, YE Jieyun, WANG Zhigang, HE Xiaoxuan, CHEN Zihui. Casting process optimization of martensitic stainless steel baffle based on ProCAST numerical simulation[J]. Nonferrous Metals Science and Engineering, 2020, 11(6): 27-33. DOI: 10.13264/j.cnki.ysjskx.2020.06.004 |
[3] | CHENG Qiuting, DENG Fei, CHEN Yanhong, XIA Yijiang, WANG Xiaojun. Numerical simulation analysis on the stability of mined-out area[J]. Nonferrous Metals Science and Engineering, 2015, (2): 85-88. DOI: 10.13264/j.cnki.ysjskx.2015.02.016 |
[4] | ZHAO Kui, SHAO Hai, XU Feng, ZENG Peng, DENG Xiao-ping, WANG Ming. Numerical simulation of stability of mining of different mining entrances in a copper mine[J]. Nonferrous Metals Science and Engineering, 2013, 4(2): 46-50. DOI: 10.13264/j.cnki.ysjskx.2013.02.009 |
[5] | WU Chang-fu, TANG Min-bo, GU Peng, LIU Hou-ming. Numerical simulation on the partial ventilation in the single entry mine tunnel[J]. Nonferrous Metals Science and Engineering, 2012, 3(3): 71-73. DOI: 10.13264/j.cnki.ysjskx.2012.03.014 |
[6] | RAO Yun-zhang, CHEN Hui, XIAO Guang-zhe, CHEN Guo-liang. On the Design of Stope Bottom Structures Based on FLAC 3D Numerical Simulation[J]. Nonferrous Metals Science and Engineering, 2011, 2(2): 43-47. DOI: 10.13264/j.cnki.ysjskx.2011.02.009 |
[7] | XU Cong-wu, ZHAO Kui, XIE Dao-hui. Numerical Simulation Research on Tunnel Arrangement in Schistosity Rock[J]. Nonferrous Metals Science and Engineering, 2008, 22(3): 6-8. |
[8] | GE Wen-jie, LI Xi-bing. Application of Numerical Simulation in Bolt Supporting Technology[J]. Nonferrous Metals Science and Engineering, 2007, 21(4): 21-23. |
[9] | CUI Dong-liang, LI Xi-bing, ZHAO Guo-ya. Analysis of the Numerical Simulation to Structure Parameter of Hard-To-Mine Ore Body in Xincheng Gold Mine[J]. Nonferrous Metals Science and Engineering, 2006, 20(3): 13-17. |
[10] | QIAO Jun-yu, XU Guo-yuan. Numerical Simulation in Reinforcement for Deep Foundation Pit with Soil Nailing[J]. Nonferrous Metals Science and Engineering, 2005, 19(4): 24-24. |
1. |
蒋瑞,陈泰强. 锌离子化海泡石涂层锌负极的制备与性能. 广州化学. 2024(01): 49-55 .
![]() | |
2. |
蔡志勇,文璟,王日初,彭超群. 增强体表面改性在高导热金属基复合材料中的应用. 有色金属科学与工程. 2024(02): 237-255 .
![]() | |
3. |
徐杰,阮挺婷,马全新,孙蓉,路胜利. 水系锌离子电池负极改性策略研究进展. 有色金属科学与工程. 2024(04): 513-526 .
![]() | |
4. |
周飞. 船用高比表面积二氧化钛核复合光催化材料研究. 舰船科学技术. 2023(12): 47-50 .
![]() | |
5. |
李尚颖,王春源,卫文飞,汪洋. 凹凸棒石包覆的锌电极的制备及其对电池性能的影响. 硅酸盐学报. 2023(10): 2617-2625 .
![]() | |
6. |
范敏敏,罗成玲,薛裕华. 水系锌电池Se@Zn负极的制备及性能. 广州化学. 2023(06): 36-39 .
![]() |