Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
DU Mingxing, LENG Jinfeng, LI Zhanzhi, YIN Yuhu. Effect of trace Er and Zr addition on mechanical properties of 6082 Al alloy during solid solution-aging treatment[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 139-146. DOI: 10.13264/j.cnki.ysjskx.2024.01.017
Citation: DU Mingxing, LENG Jinfeng, LI Zhanzhi, YIN Yuhu. Effect of trace Er and Zr addition on mechanical properties of 6082 Al alloy during solid solution-aging treatment[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 139-146. DOI: 10.13264/j.cnki.ysjskx.2024.01.017

Effect of trace Er and Zr addition on mechanical properties of 6082 Al alloy during solid solution-aging treatment

More Information
  • Received Date: December 06, 2022
  • Revised Date: January 21, 2023
  • The research shows that trace Er and Zr addition is an effective way to improve the mechanical properties of 6-series aluminum alloys, but the influence mechanism of trace Er and Zr addition on the mechanical properties during solid solution aging is still insufficient. The effect of trace Er and Zr addition (0, 0.1Er+0.1Zr(%) and 0.2Er+0.2Zr (%)) on the mechanical properties of 6082 Al alloy during solid solution aging was investigated by hardness, tensile tests and electron microscopy methods. The results show that the addition of Er and Zr has little effect on the hardness change of 6082 Al alloy at different solution temperatures (530, 540, 550 and 560 ℃), with the best solution process of 540 ℃ for 0.5 h. During the aging process at 170 ℃ (0-12 h), the Brinell hardness of Er+Zr/6082 Al alloy after the addition of Er and Zr reaches its peak at 8 h, 2h earlier than that of 6082 Al alloy. The addition of Er and Zr reduces the thermodynamic nucleation of Mg2Si phase, and accelerates the growth and evolution of Mg2Si phase during aging.
  • [1]
    GUPTA A K, LLOYD D J, COURT S A. Precipitation hardening in Al-Mg-Si alloys with and without excess Si[J]. Materials Science and Engineering: A, 2001, 316(1/2): 11-17.
    [2]
    MIAO W F, LAUGHLIN D E. Precipitation hardening in aluminum alloy 6022[J]. Scripta Materialia, 1999, 40(7): 873-878.
    [3]
    ESMAEILI S, WANG X, LLOYD D J, et al. On the precipitation-hardening behavior of the Al-Mg-Si-Cu alloy AA6111[J]. Metallurgical and Materials Transactions A, 2003, 34(13): 751-763.
    [4]
    周志伟, 龚红英, 贾星鹏, 等. 铝合金蓄能器壳体冷挤压成形多目标优化[J]. 有色金属科学与工程, 2021, 12(1): 67-74.
    [5]
    PANDEE P, PATAKHAM U, LIMMANEEVICHITR C. Microstructural evolution and mechanical properties of Al-7Si-0.3Mg alloys with erbium additions[J]. Journal of Alloys and Compounds, 2017, 728: 844-853.
    [6]
    SHI Z M, WANG Q, ZHAO G, et al. Effects of erbium modification on the microstructure and mechanical properties of A356 aluminum alloys[J]. Materials Science & Engineering A, 2015, 626(25): 102-107.
    [7]
    COLOMBO M, GARIBOLDI E, MORRI A. Er addition to Al-Si-Mg-based casting alloy: Effects on microstructure, room and high temperature mechanical properties[J]. Journal of Alloys and Compounds, 2017, 708: 1234-1244.
    [8]
    刘晓清, 李伯龙, 李红梅, 等. 铒对固溶处理Al-Mg-Si-Mn合金性能和组织的影响[J]. 中国稀土学报, 2008, 26(4): 455-460.
    [9]
    董宇, 宁庆波, 费文慧, 等. Er对Al-Mg-Si-Cu合金铸态和均匀化组织的影响[J]. 轻合金加工技术, 2019, 47(7): 15-19.
    [10]
    刘伟伟, 杨涛, 黄晖, 等. 铒元素对6063合金时效处理的影响[J]. 有色金属工程, 2012, 2(5): 30-32.
    [11]
    黄学锋, 高原, 刘贵仲, 等. 稀土Er改性6063铝合金导电性能研究[J]. 热加工工艺, 2010, 39(24): 19-20.
    [12]
    赵倩, 黄宏军, 袁晓光, 等. 含Er和Zr元素的Al-Mg-Si合金板材时效析出与强化行为[J]. 材料热处理学报, 2015, 36(11): 40-46.
    [13]
    雷远. Zr、Er微合金化对6061铝合金组织与性能的影响[D]. 合肥: 合肥工业大学, 2018.
    [14]
    WU H, WEN S P, HUANG H, et al. Effects of homogenization on precipitation of Al3(Er,Zr) particles and recrystallization behavior in a new type Al-Zn-Mg-Er-Zr alloy[J]. Materials Science & Engineering A, 2017, 689: 313-322.
    [15]
    DENG Y, ZHANG G, YANG Z, et al. Microstructure characteristics and mechanical properties of new aerospace Al- Mg-Mn alloys with Al3(Sc1-xZrx) or Al3(Er1-xZrx) nanoparticles[J]. Materials Characterization, 2019, 153: 79-91.
    [16]
    杜鹏, 闫晓东, 李彦利, 等. 6061铝合金中富铁相在均匀化过程中的相变机理[J]. 中国有色金属学报, 2011, 21(5): 981-987.
    [17]
    丁幸宇, 程永奇, 张鹏, 等. 添加Mn对6061铝合金结晶相和力学性能的影响[J]. 金属热处理, 2019, 44(3): 58-63.
    [18]
    袁蔚景, 凃杰松, 李银华, 等.回收工艺对再生铝合金性能影响述评[J]. 有色金属科学与工程, 2021, 12(5): 18-29.
    [19]
    FISCHER E. Modelling of kinetics in multi-component multi-phase systems with spherical precipitatesⅡ: Numerical solution and application[J]. Materials Science and Engineering: A, 2004, 385(1/2): 157-165.
    [20]
    LIU C H, LAI Y X, CHEN J H, et al. Natural-aging-induced reversal of the precipitation pathways in an Al-Mg-Si alloy[J]. Scripta Materialia, 2016, 115: 150-154.
    [21]
    BIROL Y, GOKCIL E, GUVENC M A, et al. Processing of high strength EN AW 6082 forgings without a solution heat treatment[J]. Materials Science and Engineering: A, 2016, 674: 25-32.
    [22]
    YU W, HE H, ZHANG W, et al. Modulation of the natural aging effect on subsequent artificial aging in Al-Mg-Si aluminum alloys with alloying content 1 wt% through temperature tuning[J]. Journal of Alloys and Compounds, 2019, 814: 152277.
    [23]
    SONG M Y, KIM J H. Microstructural evolution at the initial stage of two-step aging in an Al-Mg-Si alloy characterized by a three dimensional atom probe[J]. Materials Science and Engineering: A, 2021, 815: 141301.
    [24]
    YANG M, OREKHOV A, HU Z Y, et al. Shearing and rotation of β ″and βʹ precipitates in an Al-Mg-Si alloy under tensile deformation: In-situ and ex-situ studies[J]. Acta Materialia, 2021, 220: 117310.
    [25]
    LIU Y, LAI Y X, CHEN Z Q, et al. Formation of β"-related composite precipitates in relation to enhanced thermal stability of Sc-alloyed Al-Mg-Si alloys[J]. Journal of Alloys and Compounds, 2021, 885: 160942.
    [26]
    WANG S B, PAN C F, WEI B, et al. Nano-phase transformation of composite precipitates in multicomponent Al-Mg-Si(-Sc) alloys[J].Journal of Materials Science & Technology, 2022, 110(15): 216-226.
    [27]
    WEI B, PAN S, LIAO G Z, et al. Sc-containing hierarchical phase structures to improve the mechanical and corrosion resistant properties of Al-Mg-Si alloy[J]. Materials & Design, 2022, 218: 110699.
  • Related Articles

    [1]FAN Wenxin, GAO Yang, WANG Pengfei, CHEN Yan, YUAN Xia, PENG Lijun, FU Yabo, ZHANG Zhongtao. Effect of Ni and Si additions on the microstructure and mechanical properties of Cu-7Sn alloy[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 85-95. DOI: 10.13264/j.cnki.ysjskx.2025.01.010
    [2]ZHENG Ya, LIU Juan, YU Qiang, MU Yichen, ZHAO Xiaoyu, LI Xiaocheng. Preparation of micro-nano hierarchical Si/C composites by CO2 oxidation of porous Mg2Si and lithium storage properties[J]. Nonferrous Metals Science and Engineering, 2024, 15(2): 256-264. DOI: 10.13264/j.cnki.ysjskx.2024.02.012
    [3]QUAN Yongqi, CHENG Hanming, WANG Herui, ZHAO Yao, LIN Gaoyong. Effects of heat treatment on the microstructure and mechanical properties of die casting AlSi10MnMg alloy[J]. Nonferrous Metals Science and Engineering, 2022, 13(2): 98-106. DOI: 10.13264/j.cnki.ysjskx.2022.02.014
    [4]WANG Jingjing, HUANG Yuanchun, LIU Yu, XU Tiancheng. Influence of aging treatment on the microstructure and corrosion properties of Al-Zn-Mg-Cu-Zr-Er aluminum alloy[J]. Nonferrous Metals Science and Engineering, 2018, 9(2): 47-55. DOI: 10.13264/j.cnki.ysjskx.2018.02.009
    [5]YE Qing, FENG Xingyu, ZHAO Hongjin. Effects of solid solution time on microstructure and properties of Cu-Ni-Si-Mg alloy[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 79-83. DOI: 10.13264/j.cnki.ysjskx.2017.03.013
    [6]LIU Zheng, BAI Guangzhu, LUO Haolin. Refining mechanism of rare earth Y on primary phase Mg2Si in-situ Mg2Si/Al composites[J]. Nonferrous Metals Science and Engineering, 2016, 7(1): 28-33. DOI: 10.13264/j.cnki.ysjskx.2016.01.007
    [7]LIU Yi-zheng, YANG Cui-Yan, LIU Zhi-jie. Effects of Al-Si alloy structure heredity on 6 463 aluminum alloy containing silicon phase[J]. Nonferrous Metals Science and Engineering, 2013, 4(4): 81-84. DOI: 10.13264/j.cnki.ysjskx.2013.04.014
    [8]HE Fu-ping, LIU Feng, LI Jian-yun, ZHANG Jing-en, WANG Zhi-xiang. The effects of solution process and aging on Al-Mg-Si-Cu alloy's microstructure and properties[J]. Nonferrous Metals Science and Engineering, 2013, 4(1): 44-48. DOI: 10.13264/j.cnki.ysjskx.2013.01.013
    [9]ZHANG Ming-ming, WU Yu. On the aging behavior of Cu-Ni-Si-Zr alloy[J]. Nonferrous Metals Science and Engineering, 2012, 3(2): 12-16. DOI: 10.13264/j.cnki.ysjskx.2012.02.017
    [10]YU Chang-lin, ZHANG Cai-xia, CHEN Xi-rong, XIAO You-jun. The Effects of Zr on the Performance of Pt-Sn/γ-Al2O3 Catalyst for Catalytic Dehydrogenation[J]. Nonferrous Metals Science and Engineering, 2010, 1(01): 24-26, 48.
  • Cited by

    Periodical cited type(6)

    1. 陈治池,何强,蔡然,罗华瑞,罗南,宋忱馨,程鸿. 碳中和趋势下数学模拟在污水处理系统中的发展与综合应用. 中国环境科学. 2022(06): 2587-2602 .
    2. 吴启悦,李泓宣,张凤山,景宜,刘鸿斌. 基于GPS-X的造纸废水处理过程动态仿真研究. 中华纸业. 2021(22): 16-21 .
    3. 赵静,张洋. ASM工艺模型的应用研究进展. 资源节约与环保. 2020(01): 133-134 .
    4. 郑怀礼,李俊,孙强,赵瑞,李关侠,黄文璇,丁魏,肖伟龙. 城镇污水处理自动控制策略研究进展. 土木与环境工程学报(中英文). 2020(01): 126-134 .
    5. 彭玉,王建辉,齐高相,高旭,申渝,冯东,钟诚. 活性污泥模型(ASMs)研究进展及其发展前景. 应用化工. 2020(05): 1288-1292 .
    6. 潘东阳,刘静瑞. 基于活性污泥数学模型的污水处理工艺动态模拟. 化工设计通讯. 2019(04): 223-224 .

    Other cited types(14)

Catalog

    Article Metrics

    Article views (77) PDF downloads (14) Cited by(20)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return