Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
LIU Xin, LI Qiangfeng, WANG Zhigang, ZHANG Yinghui, XIE Jianming, LIU Weining. Hot deformation behavior and constitutive equation of low alloy micro-carbon steel[J]. Nonferrous Metals Science and Engineering, 2018, 9(4): 53-59. DOI: 10.13264/j.cnki.ysjskx.2018.04.009
Citation: LIU Xin, LI Qiangfeng, WANG Zhigang, ZHANG Yinghui, XIE Jianming, LIU Weining. Hot deformation behavior and constitutive equation of low alloy micro-carbon steel[J]. Nonferrous Metals Science and Engineering, 2018, 9(4): 53-59. DOI: 10.13264/j.cnki.ysjskx.2018.04.009

Hot deformation behavior and constitutive equation of low alloy micro-carbon steel

More Information
  • Received Date: March 13, 2018
  • Published Date: August 30, 2018
  • By applying Gleeble-3800 Thermal Simulation Tester, we study the thermal deformation behavior of micro-carbon steel at temperatures of 350℃, 400℃, 450℃, 500℃, 550℃, 600℃, 650℃, 700℃, 750℃ and under the conditions of 0.01 s-1, 0.1s-1, 1s-1. The temperature deformation constitutive equation is constructed by analyzing the characteristics of the deformed structure. The results show that the flow stress of micro-carbon steel increases with the rising strain in the initial stage of deformation, and gradually stabilizes after the peak. When the temperature is higher than 750℃, there will be obvious processing softening. With the Sellars-Tegart equation, the heat deformation activation energy Q of micro carbon steel was obtained by fitting the parameters of the model to 364.894 kJ/mol. A flow stress model is established.
  • [1]
    SEONGH H, SHIHC, JAEK C, et al.Effect of hot-rolling processing on texture and r-value of annealed dual-phase steels[J].Materials Science and Engineering A, 2010, 527(7/8):1686-1694. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0220999618
    [2]
    HIROMI Y, KANEHARU O, HIDETAKA K, et al.Effect of niobium addition on the texture formation of high strength cold-rolled low carbon steel sheets[J].Materials Science Forum, 2007, 558/559:425-430. doi: 10.4028/www.scientific.net/MSF.558-559
    [3]
    LIU DS, HUMPHREYS A O, TOROGHINEZHAD MR, et al.The Deformation Microstructure and Recrystallization Behaviorof Warm Rolled Steels[J].ISIJ International, 2002, 42(7):751-759. doi: 10.2355/isijinternational.42.751
    [4]
    YAZAWAY, MURAKIM, KATOY, et al.Effect of Chromium Content on Relationship Between r-valueand{111} Recrystallization Texture in Ferritic Steel[J].ISIJ International, 2003, 43(10):1647-1651. doi: 10.2355/isijinternational.43.1647
    [5]
    ZHANG P, GUO YH, WANG ZD, et al.Texture evolution in ferritic rolled Ti-IF steel during cold rolling[J].Journal of Iron and Steel Research, International, 2010, 17(1):44-48. doi: 10.1016/S1006-706X(10)60043-X
    [6]
    GUO YH, WANG ZD, ZOU WW, et al.Textures and properties of hot rolled high strength Ti-IF steels[J].Journal of Iron and Steel Research, International, 2008, 15(5):70-76. doi: 10.1016/S1006-706X(08)60252-6
    [7]
    康娅雪, 蔡大勇, 张春玲, 等.微碳钢的热变形方程及热加工图[J].材料热处理学报, 2012, 33(6):74-79. http://d.old.wanfangdata.com.cn/Periodical/jsrclxb201206014
    [8]
    陈瑾, 陆鑫, 杨艳军, 等.微碳钢铁素体区轧制的变形抗力模型[J].河北理工大学学报(自然科学版), 2011, 33(2):52-56. doi: 10.3969/j.issn.1674-0262.2011.02.012
    [9]
    周家林, 余茹, 余锰, 等.Ti-Mo-V微合金化钢的热变形行为[J].金属热处理, 2015, 40(4):26-30. http://d.old.wanfangdata.com.cn/Periodical/jsrcl201504006
    [10]
    曹淑芬, 张立强, 郭鹏程, 等.22MnB5热变形行为研究及本构方程建立[J].中国机械工程, 2014, 25(9):1256-1261. doi: 10.3969/j.issn.1004-132X.2014.09.022
    [11]
    余冲, 赵刚, 鲍思前, 等.50CrV4奥氏体变形流动应力的研究[J].热加工工艺, 2013, 42(2);20-23 http://d.old.wanfangdata.com.cn/Periodical/rjggy201302006
    [12]
    吴晋彬, 刘国权, 王浩等.SCM435钢热变形动态再结晶动力学模型参数的确定[J].北京科技大学学报, 2010, 32(10):1282-1286. http://d.old.wanfangdata.com.cn/Periodical/bjkjdxxb201010008
    [13]
    沈耀红, 张志清, 覃丽禄, 等.7085铝合金热压缩变形的流变应力本构方程[J].材料导报, 2011, 25(2):127-130. http://d.old.wanfangdata.com.cn/Periodical/cldb201104034
    [14]
    程晨, 雷旻, 万明攀, 等.BT25钛合金高温变形行为[J].有色金属科学与工程, 2017, 8(6):51-56. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=2017060008
    [15]
    SELLARS C M, MCTEGART W J.On the mechanism of hot deformation[J].ActaMetall, 1966, 14(9):1136-1138. http://d.old.wanfangdata.com.cn/Periodical/cldb201802020
    [16]
    AIROD A, VANDEKINDEREN H, BARROS J, et al.Constitutive equations for the room temperature deformation of commercial purity aluminum[J]. J Mater Proc Techn, 2003, 134(3):398-404. doi: 10.1016/S0924-0136(02)01129-9
    [17]
    WRIGHT R N, PAULSON M S. Constitutive equation development for high strain deformation processing of aluminum alloys[J].J Mater Proc Techn, 1998, 80/81:556-559. doi: 10.1016/S0924-0136(98)00158-7
    [18]
    ZENER C, HOLLOMON J H. Effect of stain-rate upon the plastic flow of steel[J]. Journal of Applied Physics, 1944, 15(1):22-27. doi: 10.1063/1.1707363
  • Related Articles

    [1]GUO Hao, WANG Yajie, ZHAO Hongbo, ZUO Haibin. Numerical simulation of pulverized coal forming process[J]. Nonferrous Metals Science and Engineering, 2024, 15(3): 357-363. DOI: 10.13264/j.cnki.ysjskx.2024.03.006
    [2]NIE Jincheng, YE Jieyun, WANG Zhigang, HE Xiaoxuan, CHEN Zihui. Casting process optimization of martensitic stainless steel baffle based on ProCAST numerical simulation[J]. Nonferrous Metals Science and Engineering, 2020, 11(6): 27-33. DOI: 10.13264/j.cnki.ysjskx.2020.06.004
    [3]CHENG Qiuting, DENG Fei, CHEN Yanhong, XIA Yijiang, WANG Xiaojun. Numerical simulation analysis on the stability of mined-out area[J]. Nonferrous Metals Science and Engineering, 2015, (2): 85-88. DOI: 10.13264/j.cnki.ysjskx.2015.02.016
    [4]ZHAO Kui, SHAO Hai, XU Feng, ZENG Peng, DENG Xiao-ping, WANG Ming. Numerical simulation of stability of mining of different mining entrances in a copper mine[J]. Nonferrous Metals Science and Engineering, 2013, 4(2): 46-50. DOI: 10.13264/j.cnki.ysjskx.2013.02.009
    [5]FENG Kai, ZHONG Jian-hua, TANG Zhi-li. The 3-D numerical simulation of heat transfer process for multi-start spiral pipe[J]. Nonferrous Metals Science and Engineering, 2012, 3(3): 95-98. DOI: 10.13264/j.cnki.ysjskx.2012.03.006
    [6]WU Chang-fu, TANG Min-bo, GU Peng, LIU Hou-ming. Numerical simulation on the partial ventilation in the single entry mine tunnel[J]. Nonferrous Metals Science and Engineering, 2012, 3(3): 71-73. DOI: 10.13264/j.cnki.ysjskx.2012.03.014
    [7]RAO Yun-zhang, CHEN Hui, XIAO Guang-zhe, CHEN Guo-liang. On the Design of Stope Bottom Structures Based on FLAC 3D Numerical Simulation[J]. Nonferrous Metals Science and Engineering, 2011, 2(2): 43-47. DOI: 10.13264/j.cnki.ysjskx.2011.02.009
    [8]XU Cong-wu, ZHAO Kui, XIE Dao-hui. Numerical Simulation Research on Tunnel Arrangement in Schistosity Rock[J]. Nonferrous Metals Science and Engineering, 2008, 22(3): 6-8.
    [9]CUI Dong-liang, LI Xi-bing, ZHAO Guo-ya. Analysis of the Numerical Simulation to Structure Parameter of Hard-To-Mine Ore Body in Xincheng Gold Mine[J]. Nonferrous Metals Science and Engineering, 2006, 20(3): 13-17.
    [10]QIAO Jun-yu, XU Guo-yuan. Numerical Simulation in Reinforcement for Deep Foundation Pit with Soil Nailing[J]. Nonferrous Metals Science and Engineering, 2005, 19(4): 24-24.

Catalog

    Article Metrics

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return