Citation: | YAO Kang, LUO Sihai, HU Shili, WANG Guanshi, GUO Jieqing. Calculation of critical liquid injection intensity for ion-absorbed rare earth mines[J]. Nonferrous Metals Science and Engineering, 2018, 9(1): 98-104. DOI: 10.13264/j.cnki.ysjskx.2018.01.017 |
[1] |
范飞鹏, 肖惠良, 陈乐柱, 等.赣南陂头一带风化壳淋积型稀土矿成矿地质特征[J].中国稀土学报, 2014, 32(1) :101-107. http://www.cnki.com.cn/Article/CJFDTotal-XTXB201401010.htm
|
[2] |
吴爱祥, 尹升华, 李建锋.离子型稀土矿原地溶浸溶浸液渗流规律的影响因素[J].中南大学学报(自然科学版), 2005, 3(3): 506-510. http://www.ysxbcn.com/down/down_2337655.html
|
[3] |
田君, 尹敬群, 欧阳克氙, 等.风化壳淋积型稀土矿提取工艺绿色化学内涵与发展[J].稀土, 2006, 27(1):70-72. http://edu.wanfangdata.com.cn/Periodical/Detail/jxkx201205007
|
[4] |
袁长林.中国南岭淋积型稀土溶浸采矿正压系统的地质分类与开采技术[J].稀土, 2010, 31(2):75-79. http://jz.docin.com/p-255458717.html
|
[5] |
李春.原地浸矿新工艺在离子型稀土矿的推广应用[J].有色金属科学与工程, 2011, 2(1):3-67. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=20160521
|
[6] |
苏文清.中国稀土产业经济分析与政策研究[M].北京:中国财政经济出版社, 2009: 170.
|
[7] |
黄小卫, 张永奇, 李红卫.我国稀土资源的开发利用现状与发展趋势[J].中国科学基金, 2011(3): 134-137. http://www.doc88.com/p-675124586759.html
|
[8] |
王华生, 刘祖文, 朱强, 等.南方离子型稀土原地浸矿土壤中氮化物垂直分布特征[J].有色金属科学与工程, 2014, 5(6): 132-136. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201406023
|
[9] |
汤洵忠, 李茂楠.离子型稀土矿原地浸析采场的监测[J].矿冶工程, 2001, 21(4):10-12. http://d.wanfangdata.com.cn/Periodical_kygc200104004.aspx
|
[10] |
汤洵忠, 李茂楠, 杨殿.离子型稀土矿原地浸析采场滑坡及其对策[J].金属矿山, 2000(7) :6-8. http://www.doc88.com/p-9939561980503.html
|
[11] |
肖子捷, 刘祖文, 张念.离子型稀土采选工艺环境影响分析与控制技术[J].稀土, 2014(6) :56-61. https://www.cnki.com.cn/lunwen-1016101232.html
|
[12] |
王观石, 王小玲, 胡世丽, 等.颗粒运移对离子型稀土矿体结构影响的试验研究[J].矿业研究与开发, 2015, 35(10):37-42. http://www.cnki.com.cn/Article/CJFDTotal-KYYK201510009.htm
|
[13] |
罗嗣海, 袁磊, 王观石, 等.浸矿对离子型稀土矿强度影响的试验研究[J].有色金属科学与工程, 2013, 4(3):58-61. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201303012
|
[14] |
王晓军, 李永欣, 黄广黎, 等.浸矿过程离子型稀土矿孔隙结构演化规律研究[J].中国稀土学报, 2017, 35(4):528-536. http://or.nsfc.gov.cn/bitstream/00001903-5/465445/1/1000014296786.pdf
|
[15] |
陈高峰, 程圣国, 卢应发, 等.基于均匀设计的边坡稳定性敏感性分析[J].水利学报, 2007, 37(11);1397-1401. doi: 10.3321/j.issn:0559-9350.2007.11.022
|
[16] |
饶运章, 张永胜, 饶睿, 等.离子型稀土原地浸矿边坡稳定影响因素敏感性分析[J].矿业研究与开发, 2015, 35(9):60-63. http://bianke.cnki.net/OnlineView/Index/5915
|
[17] |
饶睿, 李明才, 张树标, 等.离子型稀土原地浸矿采场滑坡特征及防控试验研究[J].稀土, 2016, 37(6):26-31. http://www.doc88.com/p-9939561980503.html
|
[18] |
郭阶庆.提高福建某离子型稀土矿原地浸矿回收率的措施[J].现代矿业, 2016, 32(8):83-86. http://mall.cnki.net/magazine/magadetail/KYKB201608.htm
|
[19] |
黄彬彬, 陈征宙, 王双, 等. Bishop法的简化计算假设对边坡安全系数的影响[J].防灾减灾工程学报, 2013, 33(4):418-423.
|
[20] |
王观石, 邓旭, 胡世丽, 等.非达西渗流条件下的单孔注液强度计算模型[J].矿冶工程, 2015, 35(3):4-8. http://or.nsfc.gov.cn/handle/00001903-5/469002
|
[1] | HUANG Jinchao, GUO Ziting, XIAO Qingmei, ZHONG Shengwen. Effect of binary composite conductive agent with graphene and carbon nanotube on performance of LiNi0.5Co0.2Mn0.3O2 lithium-ion battery[J]. Nonferrous Metals Science and Engineering, 2023, 14(3): 355-362. DOI: 10.13264/j.cnki.ysjskx.2023.03.008 |
[2] | XIA Dingfeng, ZHOU Miaomiao, GUO Qiankun, HU Shun, ZOU Jin, ZHONG Shengwen. Effect of graphene composite conductor on kinetic and electrochemical properties of LiNi0.5Co0.2Mn0.3O2[J]. Nonferrous Metals Science and Engineering, 2022, 13(3): 35-42. DOI: 10.13264/j.cnki.ysjskx.2022.03.005 |
[3] | RAO Xianfa, LI Baobao, LOU Yitao, HUANG Jinchao, WU Tingting, QIU Yuping, WANG Jiang, SHI Xuanbo, ZHONG Shengwen. Preparation and performance comparison of single crystal LiNi0.8Co0.1Mn0.1O2 cathode materials[J]. Nonferrous Metals Science and Engineering, 2021, 12(4): 42-50. DOI: 10.13264/j.cnki.ysjskx.2021.04.006 |
[4] | ZHONG Caini, CHEN Zheqin, LU Yanhua, LIU Jiaming, XIA Shubiao. A study on the synthesis and electrochemical properties of CuFe2O4 cubes as anode material for lithium-ion batteries[J]. Nonferrous Metals Science and Engineering, 2020, 11(3): 59-64. DOI: 10.13264/j.cnki.ysjskx.2020.03.008 |
[5] | LAN Chaobo, ZHANG Qian, QIU Shitao, MENG Fuhai, WU Lijue, ZHONG Shengwen. Study on high-voltage cathode material LiNi0.5Co0.2Mn0.3O2[J]. Nonferrous Metals Science and Engineering, 2019, 10(4): 72-77. DOI: 10.13264/j.cnki.ysjskx.2019.04.012 |
[6] | HU Wei, ZHONG Shengwen, LI Xiaoyan, HUANG Jingbiao, PENG Kangchun, RAO Xianfa, QIU Shitao. The study of synthetize and electrochemical properties in LiNi0.55Co0.15Mn0.30O2 cathode material[J]. Nonferrous Metals Science and Engineering, 2019, 10(3): 54-57. DOI: 10.13264/j.cnki.ysjskx.2019.03.009 |
[7] | LV Qingwen, YIN Congling, ZHONG Shengwen, DING Nengwen, LAI Jianghong, LUO Chuiyi, FAN Fengsong. Synthesis and characterization of LiNi0.6Co0.1Mn0.3O2 cathode materials[J]. Nonferrous Metals Science and Engineering, 2016, 7(4): 50-54. DOI: 10.13264/j.cnki.ysjskx.2016.04.009 |
[8] | CHEN Jun, MEI Wenjie, ZENG Min, GUO Jinkang, LIU Defang, ZHONG Shengwen. Synthesis and performance research of carboxyl substituted nickel phthalocyanine as cathode materials for lithium ion batteries[J]. Nonferrous Metals Science and Engineering, 2015, 6(5): 45-51. DOI: 10.13264/j.cnki.ysjskx.2015.05.009 |
[9] | HU Wei, ZHONG Shengwen, HUANG Bing. Optimizing electrochemical properties in Li-rich Mn-based cathode material[J]. Nonferrous Metals Science and Engineering, 2014, 5(4): 32-36. DOI: 10.13264/j.cnki.ysjskx.2014.04.007 |
[10] | ZHANG Sheng-wen, WANG Yu′e, ZHANG Qian, QIAO Xiao-ni. Synthesis and Electrochemical Properties of LiNi0.5Mn0.5O2 as Cathode Material for AA Lithium Ion Batteries[J]. Nonferrous Metals Science and Engineering, 2010, 1(02): 11-15. DOI: 10.13264/j.cnki.ysjskx.2010.06.016 |