Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
YAO Kang, LUO Sihai, HU Shili, WANG Guanshi, GUO Jieqing. Calculation of critical liquid injection intensity for ion-absorbed rare earth mines[J]. Nonferrous Metals Science and Engineering, 2018, 9(1): 98-104. DOI: 10.13264/j.cnki.ysjskx.2018.01.017
Citation: YAO Kang, LUO Sihai, HU Shili, WANG Guanshi, GUO Jieqing. Calculation of critical liquid injection intensity for ion-absorbed rare earth mines[J]. Nonferrous Metals Science and Engineering, 2018, 9(1): 98-104. DOI: 10.13264/j.cnki.ysjskx.2018.01.017

Calculation of critical liquid injection intensity for ion-absorbed rare earth mines

More Information
  • Received Date: September 25, 2017
  • Published Date: February 27, 2018
  • Ion-absorbed rare earth mines tend to cause landslides when the injection strength is too high, so it is of great importance to study the intensity of critical liquid injection. The relationship among the percentage of injection area and the critical injection intensity as well as the shear outlet height of landslide under three operation conditions was calculated by the GeoStudio software according to the related soil parameters of surface soil layer, raw ore layer and tailings layer tested on the spot. Experimental data indicates that the critical injection intensity decreases rapidly, and then tends to be slow gradually. The shear outlet height of landslides increases rapidly with the increasing of the percentage of liquid injection area. It increases lightly when the percentage of injection area is higher than 60 %. The critical injection intensity of the ore body increases by 4.8 to 7 times when the tunnel liquid collection engineering is employed. Mineral-leaching has little effect on the shear outlet height of landslides. However, the height will increase about 18 % when the percentage of liquid injection area is higher than 50 %.
  • [1]
    范飞鹏, 肖惠良, 陈乐柱, 等.赣南陂头一带风化壳淋积型稀土矿成矿地质特征[J].中国稀土学报, 2014, 32(1) :101-107. http://www.cnki.com.cn/Article/CJFDTotal-XTXB201401010.htm
    [2]
    吴爱祥, 尹升华, 李建锋.离子型稀土矿原地溶浸溶浸液渗流规律的影响因素[J].中南大学学报(自然科学版), 2005, 3(3): 506-510. http://www.ysxbcn.com/down/down_2337655.html
    [3]
    田君, 尹敬群, 欧阳克氙, 等.风化壳淋积型稀土矿提取工艺绿色化学内涵与发展[J].稀土, 2006, 27(1):70-72. http://edu.wanfangdata.com.cn/Periodical/Detail/jxkx201205007
    [4]
    袁长林.中国南岭淋积型稀土溶浸采矿正压系统的地质分类与开采技术[J].稀土, 2010, 31(2):75-79. http://jz.docin.com/p-255458717.html
    [5]
    李春.原地浸矿新工艺在离子型稀土矿的推广应用[J].有色金属科学与工程, 2011, 2(1):3-67. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=20160521
    [6]
    苏文清.中国稀土产业经济分析与政策研究[M].北京:中国财政经济出版社, 2009: 170.
    [7]
    黄小卫, 张永奇, 李红卫.我国稀土资源的开发利用现状与发展趋势[J].中国科学基金, 2011(3): 134-137. http://www.doc88.com/p-675124586759.html
    [8]
    王华生, 刘祖文, 朱强, 等.南方离子型稀土原地浸矿土壤中氮化物垂直分布特征[J].有色金属科学与工程, 2014, 5(6): 132-136. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201406023
    [9]
    汤洵忠, 李茂楠.离子型稀土矿原地浸析采场的监测[J].矿冶工程, 2001, 21(4):10-12. http://d.wanfangdata.com.cn/Periodical_kygc200104004.aspx
    [10]
    汤洵忠, 李茂楠, 杨殿.离子型稀土矿原地浸析采场滑坡及其对策[J].金属矿山, 2000(7) :6-8. http://www.doc88.com/p-9939561980503.html
    [11]
    肖子捷, 刘祖文, 张念.离子型稀土采选工艺环境影响分析与控制技术[J].稀土, 2014(6) :56-61. https://www.cnki.com.cn/lunwen-1016101232.html
    [12]
    王观石, 王小玲, 胡世丽, 等.颗粒运移对离子型稀土矿体结构影响的试验研究[J].矿业研究与开发, 2015, 35(10):37-42. http://www.cnki.com.cn/Article/CJFDTotal-KYYK201510009.htm
    [13]
    罗嗣海, 袁磊, 王观石, 等.浸矿对离子型稀土矿强度影响的试验研究[J].有色金属科学与工程, 2013, 4(3):58-61. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201303012
    [14]
    王晓军, 李永欣, 黄广黎, 等.浸矿过程离子型稀土矿孔隙结构演化规律研究[J].中国稀土学报, 2017, 35(4):528-536. http://or.nsfc.gov.cn/bitstream/00001903-5/465445/1/1000014296786.pdf
    [15]
    陈高峰, 程圣国, 卢应发, 等.基于均匀设计的边坡稳定性敏感性分析[J].水利学报, 2007, 37(11);1397-1401. doi: 10.3321/j.issn:0559-9350.2007.11.022
    [16]
    饶运章, 张永胜, 饶睿, 等.离子型稀土原地浸矿边坡稳定影响因素敏感性分析[J].矿业研究与开发, 2015, 35(9):60-63. http://bianke.cnki.net/OnlineView/Index/5915
    [17]
    饶睿, 李明才, 张树标, 等.离子型稀土原地浸矿采场滑坡特征及防控试验研究[J].稀土, 2016, 37(6):26-31. http://www.doc88.com/p-9939561980503.html
    [18]
    郭阶庆.提高福建某离子型稀土矿原地浸矿回收率的措施[J].现代矿业, 2016, 32(8):83-86. http://mall.cnki.net/magazine/magadetail/KYKB201608.htm
    [19]
    黄彬彬, 陈征宙, 王双, 等. Bishop法的简化计算假设对边坡安全系数的影响[J].防灾减灾工程学报, 2013, 33(4):418-423.
    [20]
    王观石, 邓旭, 胡世丽, 等.非达西渗流条件下的单孔注液强度计算模型[J].矿冶工程, 2015, 35(3):4-8. http://or.nsfc.gov.cn/handle/00001903-5/469002

Catalog

    Article Metrics

    Article views (51) PDF downloads (7) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return