Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
YANG Shaohua, ZHANG Dancheng, ZHAO Yujuan, LI Linshan. A study on the corrosion behavior of 5083 aluminum magnesium alloy in the NaCl solutions of different pH by SECM[J]. Nonferrous Metals Science and Engineering, 2018, 9(1): 22-27. DOI: 10.13264/j.cnki.ysjskx.2018.01.004
Citation: YANG Shaohua, ZHANG Dancheng, ZHAO Yujuan, LI Linshan. A study on the corrosion behavior of 5083 aluminum magnesium alloy in the NaCl solutions of different pH by SECM[J]. Nonferrous Metals Science and Engineering, 2018, 9(1): 22-27. DOI: 10.13264/j.cnki.ysjskx.2018.01.004

A study on the corrosion behavior of 5083 aluminum magnesium alloy in the NaCl solutions of different pH by SECM

More Information
  • Received Date: September 03, 2017
  • Published Date: February 27, 2018
  • The corrosion behavior of 5083 aluminum magnesium alloy in the NaCl solutions of different pH was studied by the polarization curve method and the AC impedance spectroscopy in scanning electrochemical microscopy(SECM). The results show that in the acid system(pH3~7), with the increase of pH, the corrosion potential shifts positively, the pitting potential is of little difference, the current density reduces, and only one of the electrochemical impedance spectra has a tendency to shrink. At the same time, the impedance and phase angle decrease, the charge transfer resistance increases, and the corrosion resistance increases.In the basic system (pH 9~12), with the increase of pH, the corrosion current density increases gradually, and the corrosion potential decreases, and the corrosion rate increases from 0.000 9 mm/a to 0.025 6 mm/a. There are two capacitive arcs in the electrochemical impedance spectroscopy, showing an anti-arc at pH=12. Meanwhile, the impedance and phase angle decrease, dissolving process of the metal compound particles accelerates, and the corrosion resistance of the alloy reduces.
  • [1]
    杨渊, 李玉光, 涂树林.国外热镀锌铝镁合金镀层钢板及其标准综述[J].冶金标准化与质量, 2013(6):45-49. http://www.doc88.com/p-7156387996649.html
    [2]
    祝晓文, 韩建民, 崔世海, 等.铝、镁合金微弧氧化技术研究进展[J].材料科学与工艺, 2006, 14(4):366-369. https://www.wenkuxiazai.com/doc/4914cf318e9951e79b8927ab-3.html
    [3]
    张静, 潘复生, 李忠盛.耐热镁合金材料的研究和应用现状[J].铸造, 2004, 53(10):770-774. doi: 10.3321/j.issn:1001-4977.2004.10.003
    [4]
    张艾艾, 何晶靖, 刘天娇, 等. 5A06铝镁合金海水腐蚀电化学特性[J].航空学报, 2015, 36(9):3147-3154. http://d.old.wanfangdata.com.cn/Periodical/hkxb201509036
    [5]
    赵月红, 林乐耘.不同加工及表面处理状态LF6铝镁合金的深海腐蚀行为[[J].中国有色金属学报, 2001, 11(增刊1):27-30.
    [6]
    穆振军, 陈翔峰, 任润桃, 等. 45#钢和铝镁合金在淡海水交替环境下的腐蚀行为研究[C]// 2009'水环境腐蚀与防护学术研讨会. 北京: 中国腐蚀与防护学会, 2009.
    [7]
    王新印, 夏妍, 周亚茹, 等.基于扫描电化学显微镜产生/收集和反馈模式研究纯Mg腐蚀行为[J].金属学报, 2015, 51(5):631-640. doi: 10.11900/0412.1961.2014.00602
    [8]
    MICHAEL V M, BENJAMIN R H. Elect roanalytical measurements using the scanning elect rochemical microscope[J]. Analytica Chimica Acta, 2000(406) :119-146. https://www.sciencedirect.com/science/article/pii/S0003267099006303
    [9]
    周亚茹, 朱泽洁, 聂林林, 等.氯离子浓度对Ni-P合金涂层失效过程影响的SECM实验和COMSOL模拟研究[J].表面技术, 2016, 45(7):8-16.
    [10]
    杨少华, 赵宇娟, 李林山, 等.微区电化学扫描技术应用现状[J].有色金属科学与工程, 2017, 8(3):29-34. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=2017030005
    [11]
    骆鸿, 魏丹.金属腐蚀微区电化学研究进展(1)扫描电化学显微镜技术[J], 腐蚀与防护, 2009, 30(7):437-441. https://www.wenkuxiazai.com/doc/267b000d27284b73f24250c7.html
    [12]
    BERNARDO B K, CARLOTA G I. Precursor sites for localised corrosion on lacquered tinplates visualised by means of alternating current scanning electrochemical microscopy[J]. Electrochimica Acta, 2003 (48) :1151-1121. https://www.sciencedirect.com/science/article/pii/S0013468602008228
    [13]
    LI J G, WU Z S. Anti-corrosive Surface Engineering and Technology[M]. Beijing: Chemical Industry Press, 2003.
    [14]
    AHMAD S, GUPTA A P, SHARMIN E, et al. Synthesis, characterization and development of high performance siloxane-modified epoxy paints[J]. Prog. Org. Coat., 2005, 54: 248-255. doi: 10.1016/j.porgcoat.2005.06.013
    [15]
    SANCHEZ-SANCHEZ C M, SOLLA-GULLON J, VIDAL-IGLESIAS F J, et al. Imaging structure sensitive catalysis on different shape-controlled platinum nanoparticles[J]. Journal of the American Chemical Society, 2010, 132(16): 5622-5624. doi: 10.1021/ja100922h
    [16]
    HENDERSON J D, FILICE F P, LI M S, et al. Tracking live cell response to cadmium (Ⅱ) concentrations by scanning electrochemical microscopy[J]. Journal of Inorganic Biochemistry, 2015, 158:92-98. https://www.researchgate.net/publication/315475651_Tracking_Live-Cell_Response_to_Hexavalent_Chromium_Toxicity_by_using_Scanning_Electrochemical_Microscopy
  • Related Articles

    [1]HUANG Yao, SU Zhigang, ZHU Binrong, CHEN Yunxiang, WAN Tao, TUO Zuxiong. Influence of corrosion on bearing capacity characteristics of overhead transmission line tower[J]. Nonferrous Metals Science and Engineering, 2024, 15(5): 723-731. DOI: 10.13264/j.cnki.ysjskx.2024.05.012
    [2]XIANG Ziqi, SHEN Huiyuan, HE Yang, SHENG Xiaofei, XIAO Zhu. Research on improving the corrosion resistance of conductive CuSn alloy for socket[J]. Nonferrous Metals Science and Engineering, 2022, 13(1): 76-82. DOI: 10.13264/j.cnki.ysjskx.2022.01.010
    [3]AI Di, ZHANG Rongwei, ZHU Zhiyun, ZHANG Yinghui, YANG Bin. Macro-electrochemical research progress on the corrosion behavior of Cu-Ni alloy[J]. Nonferrous Metals Science and Engineering, 2019, 10(6): 48-54. DOI: 10.13264/j.cnki.ysjskx.2019.06.008
    [4]ZHAO Rongbing, ZHAO Yuncai. Corrosion behavior of Fe-based amorphous and nanocrystalline coatings on conductive roller in NaOH, H2SO4 and NaCl solution[J]. Nonferrous Metals Science and Engineering, 2019, 10(4): 45-50. DOI: 10.13264/j.cnki.ysjskx.2019.04.008
    [5]HUANG Jingming, WANG Zhaowen, LIU Zengwei, TIAN Yabin, YE Changmei, YANG Shaohua. Analysis of local corrosion of 7075 aluminum alloy by SECM[J]. Nonferrous Metals Science and Engineering, 2019, 10(3): 14-20. DOI: 10.13264/j.cnki.ysjskx.2019.03.003
    [6]TIAN Yabin, YE Changmei, ZHAO Yujuan, LI Linshan, YANG Shaohua. Inhibiting action of imidazoline on the corrosion of 2099 Al-Li alloy in NaCl solution[J]. Nonferrous Metals Science and Engineering, 2018, 9(5): 14-20. DOI: 10.13264/j.cnki.ysjskx.2018.05.003
    [7]YANG Shaohua, ZHANG Dancheng, TIAN Yabin, YE Changmei, ZHAO Yujuan, LI Linshan. Corrosion of 5083 aluminum magnesium alloy in NaCl solution with different concentrations[J]. Nonferrous Metals Science and Engineering, 2018, 9(2): 1-5. DOI: 10.13264/j.cnki.ysjskx.2018.02.001
    [8]YANG Shaohua, LIU Zengwei, LIN Ming, ZHAO Yujuan, LI Linshan. Corrosion behavior of 7075 aluminum alloy in NaCl solutions with different pH values[J]. Nonferrous Metals Science and Engineering, 2017, 8(4): 7-11. DOI: 10.13264/j.cnki.ysjskx.2017.04.002
    [9]GUO Chengjun, LI Jiajie, RAO Xianfa, LUO Ce, XU Jie. Anticorrosion kinetic behavior of sintered Nd-Fe-B magnets in different corrosive climates[J]. Nonferrous Metals Science and Engineering, 2016, 7(1): 59-63. DOI: 10.13264/j.cnki.ysjskx.2016.01.012
    [10]YAO Wen-li, DONG Su-wei, CHEN Jin-qing, CHEN Xing-bin, LIU Ping. The Electrochemical Corrosion Behavior of Hot-dip Al-Zn Coatings in NaCl Aqueous Solution[J]. Nonferrous Metals Science and Engineering, 2011, 2(3): 13-17.
  • Cited by

    Periodical cited type(5)

    1. 闫红杰,黄正宗,郝澳,夏韬,刘柳. 基于DPM-VOF耦合的高铅渣底吹还原炉内多相流动数值模拟. 中国有色金属学报. 2025(02): 607-620 .
    2. 杨世亮,肖清泰,徐建新,王华. 有色金属熔池熔炼过程混沌流非线性强化研究进展综述. 昆明理工大学学报(自然科学版). 2024(04): 1-24 .
    3. 曹赓,赵俊学,王冠杰,郑江华,宗红星,李彬,崔雅茹. 镍冶炼渣中铁资源回收研究现状及发展分析. 有色金属科学与工程. 2024(04): 471-478 . 本站查看
    4. 戴鹏飞,张斌,黎显俊,尹一鸣,吴怡康,李明周. 高温铜渣风淬造粒实验研究及铜渣液滴冷凝过程的数值模拟. 有色金属科学与工程. 2024(05): 650-659 . 本站查看
    5. 张磊,潘从元,汪勇. LIBS成分检测与Ausmelt数模系统协同优化铜熔炼用氧实践. 铜业工程. 2023(06): 181-188 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (47) PDF downloads (5) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return